Сообщество - Авиация и Техника

Авиация и Техника

11 275 постов 18 387 подписчиков

Популярные теги в сообществе:

175

Ответ на пост «Буран и Шаттл»1

Я вырос на документалках и книгах о подвиге Гагарина, Леонова, Терешковой и других наших космонавтов. В 1980-е уже стало обыденностью каждый месяц на передовице советских газет видеть двоих-троих, а иногда даже пятерых космонавтов в скафандрах.

И когда во время перестройки началась новая космическая эра, с дальними марсианскими станциями Фобос-1 и Фобос-2 и особенно с Бураном-Энергией с его знаменитым перелётом на Мрии - у меня была подростковая радость, что вот опять у нас будут первооткрыватели вроде Гагарина.

Однако после единственного триумфального беспилотного полёта Бурана - всё заглохло и замолкло. А наши газеты и телеэкраны заполонили костюмы и галстуки - депутаты, мандаты, съезды, сессии, партконференции и прочее словоблудие. Из-за которого потерпел крушение не один наш Челленджер - Буран, а целиком вся огромная страна, с космической и другими отраслями, и весь советский народ.

5028
Авиация и Техника

Могут ли пилоты летать на разных самолетах одновременно1

За карьеру пилот меняет несколько типов воздушных судов.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Одни меняют самолеты как перчатки. Другие, переучившись однажды после училища, остаются с самолётом навсегда.

Это зависит скорее от характера человека, нежели от выгод, которые можнет дать новый самолет, будь то лучшая зарплата, маршрутная сеть или красивые стюардессы.

Кто-то любит учиться новому, менять образ жизни, переезжать в новые места. А кто-то предпочитает стабильность, комфорт и работает на одном самолете в одной компании всю жизнь.

Переучивание на новый самолет

  • Изучение технической части занимает около месяца.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Пилот учит оборудование, геометрические и весовые характеристики самолета, летные ограничения.

  • Тренаж на макете кабины.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Пилот отрабатывает процедуры подготовки кабины к запуску, взлету, действия на эшелоне, на снижении и после посадки. Изучает расположение кнопок, дисплеев, тумблеров и их назначение.

  • Лётный тренажер Full flight

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Здесь все как в жизни. Первые часы пилот делает ознакомительные полеты, привыкает к управлению, старается прочувствовать самолёт. Затем идет отработка отказов и аварийных ситуаций таких как: отказ двигателей, отказ систем управления, сдвиг ветра, уход от столкновения с землей или с другим самолетом и многое другое. Тренажер очень реалистичен

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Я видел, как пилоты вскрикивали и цеплялись за подлокотники, когда разбивались на тренажере. Тренировка продолжается пока пилот не справится со всеми заданиями, отказами и маневрами.

На Boeing 747 у меня не получалось справиться с отказом двух двигателей на одном полукрыле на взлете с боковым ветром и максимальной массой. Я цеплял крылом за землю. Инструктор дал мне выполнить упражнение 14 раз, пока руки не запомнили правильные движения.

Тренировка проходит по 4 часа. Тренажёр занимает около 20 дней.

  • Аэродромная тренировка

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Полеты по кругам на реальном самолете. Главная задача отработать взлеты и посадки.

Тренировка очень дорогая и бесполезная, на мой взгляд.

Сейчас ее все чаще убирают из программы подготовки. Крайний раз я летал аэродромку на А320 в 2011г.

  • Лётная тренировка в производственных условиях.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Заходим на А330 во Внуково

Это обычные рейсовые полеты с инструктором. Пилот набирает взлет/посадки, осваивает пилотирование самолета, знакомится с маршрутной сетью и просто обживается в кабине, в коллективе и в новой компании.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Этот период занимает от пары месяцев до года.

Бывает, что у пилота не получаются посадки на новом самолёте или он не может привыкнуть к логике автопилота. Проверяющий не может допустить его к самостоятельным полетам и раз за разом продляет программу.

Можно ли работать одновременно на нескольких самолетах?

Да, такая практика есть в некоторых компаниях, где эксплуатируются разные типы воздушных судов. По закону это не запрещено.

Например в S7 некоторые пилоты из командно-инструкторского состава одновременно летают на Airbus/Boeing и Embraer.

Могут ли пилоты летать на разных самолетах одновременно Авиация, Самолет, Гражданская авиация, Кабина пилота, Пилот, Полет, Техника, Длиннопост

Но это скорее редкость, чем правило. Поддерживать 2 типа ВС очень сложно как с точки зрения документов/тренировок/проверок, так и со стороны техники пилотирования и знаний.

Новый самолет-новая жизнь

Переучивание на новый самолет это целый жизненный этап для пилота, зачастую связанный с переездом в новый город или страну.

Нужно перелопатить гору технической литературы, заучить сотни процедур, освоить новую, чрезвычайно сложную машину.

И если попросить пилота коротко рассказать историю его жизни, то вы услышите: "Когда я летал на Ан-2... Потом я переучился на Ан-24... А когда я работал на Аэробусе, там вообще сказка была!

С вами был лётчик Миша из рок-группы SAHALIN. Поставьте лайк, если вам понравилась статья. Я делаю это только для вас🙂

Показать полностью 8
6449

Буран и Шаттл1

В первом посте этой серии накидали вопросов и спросили - отличался ли Буран от Шаттла, был ли он ухудшенной копией и вообще.

Так что начну с темы Бурана, а почему Шаттл до сих пор нечем заменить - оставлю на третий пост.

Для ЛЛ: нет, Буран не копия Шаттла, не ухудшенная версия и не клон. Они проектировались для выполнения схожих задач и потому имеют сходный внешний вид. Ковергентная эволюция. Общего у Шаттла и Бурана не больше, чем у акулы и косатки. Транспортная система "Энергия-Буран" появилась невовремя.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

И дисклеймер: фоточки и картиночки тянуты с buran.ru

Ну а теперь с самого начала.

В Советском Союзе про программу "Спейс Шаттл", конечно, знали. Существует масса теорий. почему вообще решили строить аналог, от тупого обезьянничанья (типа, у американов есть, чем мы хуже?), до реальных опасений, что Шаттл могут использовать как бомбардировщик. Рассматривалось несколько вариантов, некоторые были похожи на Шаттл, как сейчас бы сказали - до степени смешения. Вдобавок, в отличие от американцев во главе с Максимом Фаже, которые за два года (70-72) проанализировали около 60 разнообразных вариантов компоновки. наши сразу решили "делаем Шаттлоподобное".

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

Это, например, ОС-120-5, один из ранних проектов, набросанных буквально на коленке. Ничего не напоминает? Проблем выявили тогда чуть более чем дохрена, в частности, проблемы с аэродинамикой - до прихода в проект авиационной НПО "Молнии" разработкой занималась НПО "Энергия", которая аэродинамикой всегда занималась по остаточному принципу, зато могла и умела в полеты разнообразного добра с малым аэродинамическим качеством. Говоря попросту - контора собаку съела на разнообразных летающих кирпичах и утюгах. В результате их проект оказался тяжелым, полная стартовая масса самого ракетоплана была 155 с гаком тонн, из которых груза только тридцать, посадочная - 89 тонн. Для сравнения сам Шаттл весит 132 тонны на старте и 93 на посадке. Поэтому в конечном итоге решением совместного научно-технического совета МОМ и МО от 29 июля 1975 г разработчикам сказали всё херня, переделывайте проведите оптимизацию основных тактико-технических характеристик и уточните облик МКС (не международной космической станции, а многоразовой космической системы).

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

Выглядит действительно как разожравшийся и огрузневший Спейс Шаттл. Дополнительные двигатели сзади-снизу - твердотопливные двигатели системы спасения.

Забрили проект по целому ряду причин - во первых, как это было популярно в Союзе - военные хотели что-то универсальное. А в проекте ОС-120 всплывала главная проблема Шаттла - то, что без самого орбитального самолета система не летала. Помнившим фиаско с Н-1 и понимающим, что всё может повториться (потому что уровень предполагаемых технических новаций был сопоставим), хотелось иметь возможность испытать носитель без космоплана.

Так же был понятен и отказ от твердотопливных бустеров. Во-первых, СССР от США в вопросе твердотопливных двигателей серьезно отставал. Во вторых, и это было важнее - предстояло летать на высоконаклонные орбиты. А чем выше наклон орбиты - тем до большей скорости надо разогнать аппарат, потому что всё меньшую прибавку дает вращение самой Земли. Тот же Шаттл при гипотетическом полете на полярную орбиту (это которая проходит через оба полюса, в реальности Шаттлы на неё так ни разу и не слетали) терял почти две трети грузоподъемности, вытаскивая не 29.5 тонн - а всего 12. Поэтому решили использовать хорошо отработанный керосин+кислород на первой ступени - что давало хороший выигрыш в эффективности. И, побочным, но не последним бонусом - снижение рисков для корабля.

Заодно перенос двигателей на бак и превращение бака в полноценную вторую ступень позволяло облегчить космоплан - ведь ему теперь нужно нести только собственный вес, на его конструкции больше не будет приходить нагрузка от бака, как если бы ему пришлось своими двигателями поднимать и себя, и внешний бак, как это делает Спейс Шаттл. Да и военные задавали вопрос - а зачем делать в разы более дорогую конструкцию, если выводим только в полтора раза больше "Протона"? Стыковку мы освоили - а два "Протона" всё ещё дешевле. Можем десять тонн заложить на маневровое и стыковочное оборудование - и всё равно будем в плюсе.

Следующий вариант предложили смешанный - ОК-92. По факту - трехступенчатую систему, с двигателями и на баке, и на космоплане.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост
Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

Получилась "смесь ужа с ежом" , имевшая недостатки обеих систем, за исключением невозможности пуска в одиночном режиме носителя без ракетоплана, без достоинств.

В итоге - решили делать правильно - мухи ракета-носитель отдельно, котлеты ракетоплан отдельно.

В итоге, поскольку не нужно было возить на себе по космосу тяжелые маршевые двигатели - Буран превосходил Шаттл ещё и в орбитальных возможностях. Система орбитального маневрирования Шаттла была на ядовитых и высококипящих компонентах - Буран же использовал кислород-керосиновые двигатели ориентации и маневра, с вполне приличным удельным импульсом в 362 секунды и возможностью перезапуска до 5000 раз за полет. Шаттл же имеет намного менее эффективные вытеснительные двигатели с УИ всего лишь 316 секунд (для пустотного двигателя это очень мало). Для Бурана были доступны очень большие наклонения и широкий диапазон орбит - Шаттлы даже для полета к МКС пришлось сильно модернизировать, включая использование суперлегкого бака. И всё равно, для Колумбии, самого первого Шаттла - полет к МКС был на грани допустимых рисков - в реальности она так до МКС и не слетала.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

Корма Бурана с двигателями орбитального маневрирования.

В итоге общего у Бурана и Шаттла - лишь аэродинамическая схема и размеры.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

Вот так выглядит Буран

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

А вот так - Шаттл

Проблем при разработке Энергии было много. Главной проблемой - с водородом Советский Союз до того не работал. Много чего пришлось изобретать с нуля, и всё равно, бак Энергии был тяжелее и с худшим массовым совершенством (соотношением массы пустого бака к массе заправленного), чем даже самый первый бак Шаттлов, а их, так-то, было аж три версии, и до последней, SLW, superlitghweight - баку Энергии было как до Луны пешком.

При этом кое в чем водородные двигатели второй ступени Энергии, РД-0120б были совершеннее Шаттловских RS-25. В частности, это касалось привода турбонасоса, качавших кислород и водород в камеру сгорания. На выходе из турбонасоса горючего давление достигало 475 атмосфер. В отличие от одновальных турбонасосов, примененных Рокетдайном, советские разработчики применили двухвальный насос - более сложный и несколько более капризный, но зато начисто исключающий попадание горячего водорода в тракт окислителя безо всяких промежуточных камер с гелием. Двигатель получился удачным - итоговая версия выдерживала без переборки 4072 секунды работы за 9 перезапусков, из которых один - 1202с. Для сравнения - время работы двигателя в полете на самую энергозатратную орбиту - чуть больше 500 секунд.

С первой ступенью тоже было интересно. Расчёты показали, что для более тяжелой и более энергоемкой Энергии, даже при использовании четырех боковых блоков, а не двух, как у Шаттла, нужен жидкостный ракетный двигатель, который будет мощнее, чем F-1, и эффективнее его. Опыта разработки таких двигателей у СССР не было, и все понимали, что разработать камеру сгорания таких размеров в обозримые сроки не получится - её можно было создать только методом научного тыка, даже сейчас, при наличии суперкомпьютеров, адекватной математической модели происходящего в камере сгорания ракетных двигателей нет. Делать же методом научного тыка не позволяли бюджеты, а после фиаско с Н-1 любого, заикнувшегося о многодвигательной схеме, ждала бы Чукотка - страна испытывала острый дефицит конструкторов оленьих нарт. Поэтому, в КБ Энергетического машиностроения, которым поручили разработку, решили пойти на хитрость - сделать многокамерный двигатель. Опыт строительства многокамерных двигателей в Союзе был. Для того, чтобы вписать двигатель в ограниченный диаметр. пошли на хитрость - в дело снова пошел двухвальный комбинированный турбонасос горючего и окислителя., поставленный вертикально, а камеры сгорания разместили по углам. В двигателе использовали много наработок по РД-253, маршевому двигателю Протона, несмотря на применение другой топливной пары. В итоге с одной камеры сгорания снимали примерно 185 тонн тяги - что было вполне достаточно. Получился двигатель хоть и сложный - но с хорошим удельным импульсом в без малого 310 с у земли (F-1 давал лишь 263 с) и надежный, поскольку нагрузка на каждую камеру была не так и велика.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост

В итоге, собранная по пакетной схеме Энергия получила возможность вытащить на орбиту как космоплан - так и любую другую полезную нагрузку. Этим она сильно отличалась от Шаттла - Шаттл почти всегда летал недогруженным - габариты грузового отсека не позволяли. До аварии Челленджера были даже изрядно наркоманские проекты с полезным грузом на вершине бака Шаттла. Энергия же могла тащить что угодно - лишь бы укладывалось в вес.

Теперь о самом главном - о безопасности. Комплекс "Энергия-Буран" был намного безопаснее Шаттла. Обе катастрофы, убившие Челленджер и Колумбию - были попросту невозможны с Энергией-Бураном.

Начнем с аварии Челленджера. Как известно, на 60 секунде после старта горячие газы из двигателя окончательно пробили боковую стенку бустера и начали прожигать внешний топливный бак. С этого момента и до взрыва бака прошло 12 секунд. Представим, что на месте Челленджера - Буран. На 60 секунде полета разрушается камера сгорания двигателя одного из блоков А, струя горячих газов начинает бить в бак. Что происходит? Система пожаротушения двигателя регистрирует пожар в двигательном отсеке и начинает продувать отсек двигателя фреоном и азотом с расходом в 30 кг/с. Поскольку за две секунды (это 62 секунда полета, бак ещё цел, он прогорит лишь на 64 секунде) пожар не потушен - автоматика выключает двигатель и аварийно сбрасывает окислитель из проблемного блока за борт, облегчая ракету. В принципе, на пределе возможного даже на трех двигателях из пакета первой ступени Энергия могла вытащить Буран на низкую одновитковую орбиту. Миссия проваливается, но корабль и люди остаются живы и здоровы.

Теперь представляем Буран на месте Колумбии. Могло ли что-то отвалиться от носителя?

Нет, не могло. Бак Энергии не покрывался пеной - будучи менее высокотехнологичным и более тяжелым, чем баки Шаттлов, бак центрального блока Энергии не имел внешней оболочки из пены. Нечему было падать.

Ну и последний вопрос - была ли у "Энергии-Буран" перспектива?

Я думаю, что да. Этому комплексу просто не повезло, он появился в неудачное время. Появись этот комплекс на десять лет раньше, в 78-м - и тогда огромный грузовой потенциал Энергии позволил бы забить "гол престижа" в лунной гонке, "размочить счёт", проведя хотя бы одну пилотируемую высадку.

Появись Буран на десять лет позднее, в 1998, когда уже началась история МКС - "Зарю вполне мог вывести "Буран". А затем можно было бы Энергией выводить намного более крупные и эффективные научные блоки - и сейчас на МКС было бы не по пять-семь человек, а по десять-пятнадцать. И к Луне, пусть даже совместно с американцами, мы бы уже снова начали летать.

Возможно ли сейчас "воскресить" Буран? Нет, потому что разорваны технологические цепочки. Можно лишь спроектировать с нуля нечто похожее. Как минимум - отказавшись от водорода - пример Маска с его многоразовыми кислород-керосинниками и метан-кислородниками показывает, что водород как топливо для маршевых двигателей попросту больше не нужен.

Внизу я запилю два поста-вопроса - о чем следующий пост - почему без Шаттла мы не можем даже повторить МКС или история Центавра и RL-10. Какой пост наберет больше плюсов - тот и запилю следующим.

Буран и Шаттл Космос, Космический корабль, Энергия-буран, Шаттл, Длиннопост
Показать полностью 10
191

Посадка в Астрахани наперегонки с тенью. Видео из кабины Boeing 737

Этот заход на ВПП 09 в аэропорту Астрахани мы выполнили по неточной системе ОСП (NDB).

На старых самолетах такие заходы не были тривиальными - для того, чтобы выйти в створ полосы пилотам приходилось определять положение относительно ее по двум (а то и по одной) стрелкам радиокомпасов, иногда работающих, кхм, не очень точно. В плохую погоду такой заход требовал изрядного мастерства. Мне повезло (наверное) - я застал те времена, когда такие заходы выполнялись по "классике". Но на современных лайнерах, тем более имеющих опциональную систему IAN (Integrated Approach Navigation), такие заходы практически не отличаются от банальных заходов по ИЛС. Что и было продемонстрировано в этом полете.

Скучно? Ну, в общем, да. Но так гораздо надежнее и, следовательно, - безопаснее! Но и по "стрелкам" пилот тоже должен уметь крутить, правда, в реальной жизни такие "классические" заходы современный пилот встречает разве что во время редких тренажерных тренировок.

"Небесные истории" - книги о полетах и лётной работе: на Ридеро на Литрес на Читай-Город

Новая книга "Профессия шофер самолета" - для тех, кто мечтает о небе, но не знает, с какой стороны к нему подступиться.

Показать полностью
117
Авиация и Техника

Чем жестче посадка, тем громче аплодисменты

Причины жесткой посадки: усталость экипажа, скорость ниже/выше рассчетной, визуальные иллюзии, неправильная работа газом, порывы ветра, неучет веса самолета/превышения аэродрома, посторонние в кабине😐

5010

Ответ на пост «Почему грузовые дирижабли не стали коммерчески успешны?»1

Одной из причин, по которой полеты Шаттлов стоили так дорого и от них, в результате, отказались, были постоянные тщательные проверки на дефекты покрытия потому, что катастрофу Колумбии никто повторять не хотел.

К сожалению, проверка на дефекты покрытия была самой малой из проблем Шаттлов. К тому же, проверять надо было в полете - никакая дефектовка на Земле не спасла бы Колумбию, которую убили её собственные твердотопливные бустеры ещё на старте, тряханув в момент зажигания бак так, что от него в итоге обшивка полетела. Каковая обшивка и проломила крыло.

Вообще вся программа "Спейс Шаттл" - история, как кроилово привело к попадалову и иллюстрация поговорки "Скупой платит дважды" .

Начать хотя бы с главных "убийц программы" - твердотопливных бустеров. Да, именно бустеры убили Шаттлы - и Колумбию, и Челленджер. Челленджер прямо, Колумбию опосредовано. Что ты несешь, скажете вы мне,  Колумбию убила пена! Нет. Колумбию убили бустеры. И вот почему.

Твердотопливный бустер имеет два принципиальных недостатка для пилотируемого полета - его нельзя отключить и его нельзя регулировать по тяге иначе, как на этапе отливки шашки топлива.

Из-за этого на старте бустеры врубались сразу на полную катушку. В итоге на крепления  бустеров к баку (откуда и отломился тот кусок пены) в момент старта приходила чудовищная ударная нагрузка в 4/5 тяги системы. Почему? А потому что жидкостные двигатели Шаттла запускались и выходили на полную мощность ещё до отрыва от стартового стола, а за стартовый стол Шаттл держался только бустерами. В итоге, за миллисекунду до старта на крепления бака к бустеру приходится нагрузка, равная примерно 270 тоннам (заправленный бак и Орбитер весят примерно 860 тонн, развиваемая двигателями орбитера тяга равна 591 тонне). И тут ХЕЕЕРРРАКСЬ! - зажигаются оба бустера, и нагрузка растет скачком, переваливая за 2000 тонн! (2600 тонн тяги бустеров минус 591 тонн тяги маршевиков). Неплохо так, скачок нагрузки в десять раз меньше чем за секунду.

Естественно, такой скачок нагрузке приводил к деформации, упругой, но. Пена переживала деформацию намного хуже стали. И отрывалась. Итог известен.

Но почему использовали твердотопливные бустеры? Почему не стали применять жидкостные двигатели? Ответ прост - пытались сэкономить.

Предыдущая пилотируемая космическая система Штатов была запредельно дорогой - корабль Аполлон и носители серии Сатурн стоили совершенно немеряных денег. НАСА хотело что-нибудь подешевле - после выигрыша "лунной гонки", на фоне расходов на Въетнам и общих проблем в экономике, бюджет НАСА зарезали в разы. Давать "на космос" чуть ли не 10% госбюджета, что и позволило создать "Сатурн", Конгресс больше не был готов. В итоге НАСА решили (и в общем, правильно) что выкидывать в каждом пуске десятки тонн сверхдорогого высокотехнологичного железа - расточительно, и надо думать о многоразовости. Особенно - самого дорогого - первой ступени.

Проблема была проста как валенок - не умели сажать в автоматическом режиме. Испытания показали. что максимум, до чего можно затормозить большую и тяжелую бочку парашютами в автоматическом режиме - это 23м/с. Примерно 80 км/ч. Ни один ЖРД ни сейчас, ни тогда, такого подарка судьбы пережить не мог. Второй проблемой была цена. Требовался очень мощный двигатель, а повторить разработку F-1, когда оптимальную форму камеры сгорания искали буквально методом научного тыка, взрывая по восемь экспериментальных камер сгорания в неделю - не было денег. В многодвигательную схему, после известий о феерических провалах Союза с Н-1 (включая мощнейший неядерный взрыв в истории на тот момент, когда второй экземпляр Н-1 рухнул прямо на стартовый стол и только чудом никого не убил), тоже не очень верили. В итоге решили делать твердотопливный бустер. Big Dumb Rocket. Решалось две проблемы - на твердотопливных бустерах большой тяги НАСА на тот момент съела уже пару лаек и чихуахуа - Титаны и Дельты летали вполне успешно, а во вторых - пустая металлопластковая бочка бустера спокойно переживала падение в океан на скорости под сотню км/ч. Кстати - тормозили об воду оригинальным способом - бустер падал хвостом вперед, вода поступала через дюзу внутрь бустера, сжимая воздух внутри него. Получался эдакий амортизатор, плавно тормозящий почти девяностотонную конструкцию, и заодно - не дающий ей утонуть.

Но и кроме пены у Шаттла была ещё куча проблем. Например, двигатели RS-25 были многоразовыми весьма условно - после каждого полета их приходилось снимать с Шаттла, разбирать до последнего болта, дефектовать, менять кучу всего понавыходившего из строя и собирать обратно.  Причина - в невероятной инженерной сложности конструкции. В частности, в турбонасосе кислорода использовался жидкий гелий под огромным давлением. Спросите - зачем? А дело в том, что турбонасос окислителя крутила турбина, приводящаяся горячим восстановительным газом - а если проще - разогретым до нехилой температуры водородом с примесью водяного пара. А водород - это такая погань, которая умеет просачиваться в любую щель, через любое уплотнение. А теперь вопрос - что будет, если раскаленный водород найдет себе тропку вдоль вала турбины и попадет в качаемый турбонасосом кислород? Правильно, будет очень большой БАБАХ, после чего турбонасос разуплотнится, а двигатель в лучшем случае заглохнет. Поэтому на валу турбонасоса поставили промежуточную камеру - и в неё качали гелий под давлением больше, чем в самой турбине - чтобы в случае чего давал утечку гелий, а не водород.

Далее. Применение водорода самого по себе. Да, пара водород-кислород дает офигительно высокий удельный импульс. Это плюс. Минус в том, что в формуле Циолковского, критическом уравнении, описывающем выход на орбиту, кроме УИ двигателя, есть ещё разница между массой заправленной системы и масса пустой. И чем больше эта разница - тем лучше. И вот тут всплывает другая проблема водорода. Он очень, очень, очень легкий. В итоге, для того чтобы взять большую массу водорода - нужен очень большой в объеме бак. А большой бак - тяжелый бак. А нам нужно, чтобы масса пустой системы и масса заправленной - различалась как можно больше.  Велика проблема, скажете вы. За двадцать лет до Шаттла эту проблему решили дешево и сердито, ещё на самом первом Атласе, который из 120 тонн массы на старте имел всего 8 тонн конструкционного веса (всё остальное - топливо и окислитель)! Просто тоненькая (один миллиметр внизу и утончение до 0.1 мм сверху) оболочка из аустенитной стали вокруг топлива и окислителя, пусть топливо и окислитель несут сами себя, а чтоб "воздушный шарик" не сдулся по мере выработки топлива - возьмем немножко газа от турбонасосов и пустим в баки - наддуем их! А вот фиг, говорит нам физика. Да, "воздушный шарик" Атласов (их даже хранили наддутыми, без содержимого в баках Атласы складывались под собственным весом) был очень эффективным (единственная в истории полутораступенчатая ракета, выходившая на орбиту почти вся целиком, за исключением двух движков и юбки), но. Сделать такой "шарик" для водорода нельзя. Причина - жидкий водород очень и очень холодный! -253 градуса! С Атласами-то изрядно помучились, пока подобрали сорт стали, не превращающейся в хрусталь при температуре -183 при температуре жидкого кислорода. А сделать такую сталь для водорода невозможно в принципе.  В итоге бак Шаттлов мастырили из хитрого сплава алюминия и лития, с точным литьем и большими геморроями в обработке. И весил бак Шаттлов немало - десятки тонн, и был очень дорогим, и при этом - принципиально одноразовым.

Кроме того, жидкий водород - в принципе крайне неприятная жидкость. Он просачивается через всё на своем пути, даже сквозь сплошной стальной лист - молекула водорода настолько маленькая, что может проскользнуть через кристаллическую решетку железа (диаметр молекулы - примерно 2 ангстрема, расстояние между атомами железа в кристаллической решетке - от 3 до 6 ангстрем). Из-за чудовищно низкой температуры жидкий водород охрупчает всё, с чем соприкасается. Его утечка чревата большим бадабумом - а утекать он очень любит. Причем с ростом размера бака и объема водорода проблемы растут в геометрической прогрессии.

Вы скажете - а как же блок Центавр и RL-10? RL-10 работает на принципе фазового перехода - ему не нужен турбонасос, и он в принципиальном потолке. Физика не дает сделать двигатель больше и мощнее, чем RL-10 на фазовом переходе.

И таких "приколов" у Шаттла была тысяча и один. Сравните с "летающими трубами Маска" на открытом цикле.  Свой инженерно ещё более сложный Раптор Маск построил после наработки многолетней регулярной практики эксплуатации многоразового двигателя. У Рокетдайна такого опыта не было. В итоге - они построили невероятно дорогое чудовище, от которого требовали огромной эффективности любой ценой. Зачем? Да затем. что твердотопливные бустеры КРАЙНЕ неэффективны. Удельный импульс твердого топлива Шаттлов - всего 265 с в вакууме и ещё меньше у Земли. Это очень мало - инженерно примитивный по сравнению с RS-25 Мерлин дает 311 с в вакууме в наземной версии - и 340 с - в вакуумной. В итоге к моменту отделения бустеров скорость Шаттла была очень невелика - чуть больше 1.2 км/с. И почти весь остаток до первой космической скорости, почти 6 км/с, должны были додать двигатели самого Шаттла.

В итоге ни о каких "двух неделях" между пусками не шло и речи - два месяца - это минимум для подготовки повторного старта челнока ( в1984 году Челленджер летал в феврале и апреле, правда, после этого его обслуживали аж до октября, в 1984-1985 Дискавери летал в ноябре, январе, апреле, июне и августе, но потом простоял очень долго. в том числе и из-за катастрофы Челленджера). А в итоге - в среднем пять-шесть пусков в год и закрытие программы после 135 пусков.

При том. что то, что делал Шаттл - сейчас не может делать никто. Даже Маск. Почему так - могу отдельный пост накатать.

Ответ на пост «Почему грузовые дирижабли не стали коммерчески успешны?» Транспорт, Длиннопост, Ответ на пост, Шаттл, Космос
Показать полностью 1
Отличная работа, все прочитано!