Принцип проведения эксперимента.
Вы когда-нибудь задумывались, почему ни одно изображение не может быть бесконечно четким? Это не просто вопрос недостатка технологий или плохого освещения. На протяжении последних 150 лет учёные знают, что существуют фундаментальные пределы разрешения, которые невозможно преодолеть. Положение частицы никогда не может быть измерено с бесконечной точностью; определённая степень размытости неизбежна. И всё это связано с физическими свойствами света и передачей информации.
Но вот интересная новость: команда из Венского университета, Университета Глазго и Университета Гренобля решила разобраться, где же находится этот абсолютный предел точности, и как можно максимально приблизиться к нему. И они сделали это!
Абсолютный предел точности: загадка, которую стоит разгадать!
Представьте себе ситуацию: вы пытаетесь рассмотреть маленький объект, скрытый за мутным стеклом неправильной формы. Вместо четкого изображения вы видите сложный световой узор, состоящий из множества светлых и темных пятен. Вопрос, который возникает: насколько точно мы можем определить, где на самом деле находится объект, основываясь на этом изображении?
Эта задача имеет огромное значение для таких областей, как биофизика и медицинская визуализация. Когда свет проходит через биологические ткани, он теряет информацию о более глубоких структурах. Но какую часть этой информации можно восстановить? Ответ на этот вопрос не только технический — здесь вступает в игру сама физика, устанавливающая фундаментальные ограничения.
Здесь на помощь приходит теоретический показатель, известный как информация Фишера. Этот показатель описывает, сколько информации содержит оптический сигнал о неизвестном параметре, таком как положение объекта. Если информация Фишера невелика, точное определение становится невозможным, независимо от того, насколько тщательно вы анализируете сигнал. Исходя из этого, команда смогла рассчитать верхний предел теоретически достижимой точности в различных экспериментальных сценариях.
Нейронные сети: учимся на хаосе.
Пока теоретики занимались расчетами, экспериментальная группа, возглавляемая Дорианом Буше из Университета Гренобля, провела захватывающий эксперимент. Лазерный луч направлялся на небольшой отражающий объект, скрытый за мутной жидкостью. На полученных изображениях были видны только сильно искаженные световые узоры. Условия измерения варьировались, что усложняло получение точной информации о местоположении объекта.
"Для человеческого глаза эти изображения выглядят как случайные узоры", — говорит Максимилиан Веймар, один из авторов исследования. Но вот в чём фишка: если мы введём множество таких изображений — каждое с известным положением объекта — в нейронную сеть, она сможет распознать, какие шаблоны связаны с какими позициями. После достаточного обучения сеть смогла очень точно определять положение объекта, даже с учётом новых, неизвестных шаблонов.
Почти на пределе физических возможностей.
Интересно, что точность прогнозирования была лишь незначительно ниже теоретически достижимого максимума, рассчитанного с использованием информации Фишера. "Это означает, что наш алгоритм, поддерживаемый искусственным интеллектом, не только эффективен, но и почти оптимален", — утверждает профессор Роттер. Он обеспечивает почти ту же точность, что и законы физики.
Это открытие имеет далеко идущие последствия: с помощью интеллектуальных алгоритмов оптические методы измерений могут быть значительно усовершенствованы в широком спектре областей — от медицинской диагностики до исследований материалов и квантовых технологий. В будущих проектах исследовательская группа планирует сотрудничать с партнёрами из прикладной физики и медицины, чтобы исследовать, как эти методы, поддерживаемые искусственным интеллектом, могут быть использованы в конкретных системах.
Таким образJV, мы стоим на пороге новой эры в оптических измерениях. Искусственный интеллект, в сочетании с глубокими знаниями о физике, открывает двери к более точным и эффективным методам визуализации. В будущем мы сможем разглядеть мир с такой чёткостью, о которой раньше могли только мечтать. И, возможно, в этом мире не останется ни одного «размытого пятна».