Природа старения – одна из загадок биологии, хотя проявления этого процесса знакомы всем. За последние пару сотен лет средняя продолжительность жизни людей существенно выросла: человечество усвоило главные правила гигиены и санитарии, детская смертность снизилась благодаря вакцинации, а изобретение антибиотиков позволило бороться с инфекциями. Но выросла именно средняя продолжительность жизни – максимальная практически не изменилась! И только достижения биологической науки последних лет дали надежду на появление технологий, которые замедлят процессы старения у человека
Как мы знаем, после достижения определенного возраста люди слабеют, становятся более медлительными, менее выносливыми и сообразительными. Они чаще болеют инфекционными, аутоиммунными и опухолевыми заболеваниями из-за нарушений функции иммунной системы. У них начинаются проблемы с сердечно-сосудистой системой, атрофируются клетки нервных волокон. Короче говоря, ухудшаются функции всех органов и систем, что в конце концов приводит к смерти, но не «от старости вообще», а от какой-нибудь конкретной болезни, с которой ослабленный организм не может справиться.
Turritopsis rubra – ближайшая родственница крошечной «бессмертной медузы» T. dohrnii, которая способ
Видимым образом старение человека начинает проявляться в возрасте примерно 40 лет, хотя уже в 20 лет может меняться мозговая активность, а спустя еще десяток лет – и мышечная. На молекулярном и клеточном уровне у пожилых людей наблюдаются нарушения работы митохондрий («клеточных электростанций»), укорачиваются хромосомные колпачки-теломеры, изменяется распределение эпигенетических (не меняющих саму структуру нуклеиновой кислоты) меток в ДНК. Все это приводит к каскаду метаболических нарушений и старению клеток, развитию воспаления и несостоятельности органов, что провоцирует рак, сахарный диабет и деменцию.
Но все же почему люди стареют, почему не живут полноценной жизнью лет по триста? И можно ли каким-то образом повлиять на процессы старения? К сожалению, исчерпывающих ответов на все эти вопросы пока нет.
Старение: известное, неясное и непонятное
Длительность жизни различных организмов сильно варьирует. Как известно, некоторые деревья живут тысячи лет, а некоторые насекомые – считанные часы. И здесь появляется вопрос: можно ли считать жизнь человека долгой?
В литературе любят приводить цифры относительно максимальной продолжительности жизни животных. Вот некоторые примеры достоверных данных: домовая мышь – 4 года, собака – от 29 до 34 лет, слон – 69–86 лет, осетр – 152 года. Среди позвоночных в лидерах галапагосская черепаха – 177 лет, гренландская полярная акула – 270–510 лет, гренландский кит – 210 лет.
Ожидаемая продолжительность жизни разных животных: от беспозвоночных и рыб до пресмыкающихся, птиц и
Заметим, что в наличии долгожителей среди домашних собак и кошек, так же как и среди черепах и слонов в зоопарках, сомневаться не приходится: даты их рождения и смерти задокументированы. А вот по поводу акул и прочих рекордсменов в дикой природе, которые живут без присмотра и паспорта, следует проявлять осторожность. В природных условиях животные погибают от болезней, хищников, нехватки еды – до биологической старости они могут дожить лишь в искусственных условиях. Поэтому приведенные выше цифры – лишь оценки, полученные с помощью разных методов (например, возраст китов датировали по найденным в их телах гарпунам, а акул – по радиоуглеродному анализу белков хрусталика глаза).
Еще любят писать об африканских грызунах голых землекопах, которые живут десятилетиями и якобы даже не болеют. Явление супердолгожительства таких животных называют пренебрежимым старением.
Продолжительность жизни животного зависит от веса его тела: крупные особи живут дольше. Но и здесь е
Здесь стоит пояснить, что представляет собой старение с точки зрения статистики. Если взять много любых объектов, в принципе имеющих конечный срок существования (людей, радиоактивных атомов, лампочек накаливания), и наблюдать за ними долгое время, то можно определить то, что называют «интенсивностью отказов».
И здесь важный нюанс. Атомы и лампочки не стареют. Для любого радиоактивного атома вероятность распасться в любое время одна и та же, и включенная лампочка может перегореть с одинаковой вероятностью в любое время. Если взять очень много атомов или лампочек, то их число будет убывать по очень простому экспоненциальному закону: через какое-то время, называемое периодом полураспада (или временем полужизни, если речь идет не об атомах), их останется половина, через два периода полураспада – четверть, через три – одна восьмая…
Старейшая на планете касатка, родившаяся приблизительно в 1911 г., прозванная Бабулей (Granny), прож
Не то что с живыми существами. Еще в XIX в. статистики Б. Гомпертц и У. Мейкхам, работавшие на британские страховые компании, на основе большого демографического материала показали, что вероятность смерти человека с возрастом также увеличивается экспоненциально.
Так что, если мы возьмем много одновременно родившихся людей, их число будет убывать со временем по «экспоненте в степени экспоненты»: медленно в начале и очень быстро в конце. Закон Гомпертца – Мейкхама очень хорошо работает в возрастном интервале 30–80 лет, и на него до сих пор опираются страховые компании при расчетах взносов и выплат. А пренебрежимое старение – это именно тот случай, когда живые существа ведут себя как лампочки.
Если разбираться подробнее, то в формуле Гомпертца – Мейкхама есть два члена: «независимый от возраста» и «зависимый». С тех пор, как человечество начало вести более-менее надежную демографическую статистику, практически все увеличение продолжительности жизни шло за счет независимого от возраста компонента смертности – основной вклад внесли улучшение санитарно-гигиенической ситуации и лучшая обеспеченность продуктами питания. А вот зависимый от возраста компонент никак не поменялся, с самим старением пока ничего сделать не удалось.
Почему закон Гомпертца – Мейкхама не работает после 80 лет? Кстати сказать, на самом деле никто точно не знает, отказывает он или нет. Проблема в том, что даже для человека – вида, для которого имеется огромный объем демографических данных, – до самого последнего времени известных долгожителей было слишком мало, чтобы надежно экстраполировать число доживших какой-то математической функцией. Есть подозрения, что начиная с 1950‑х гг. вероятность смерти для очень старых людей стала уменьшаться, но статистики до сих пор спорят, действительно ли это так. В любом случае очевидно, что для надежного анализа кривых выживания нужно иметь очень много данных.
Но если таких данных не всегда достаточно даже для человека, то что говорить о том же голом землекопе? Эти грызуны действительно живут долго, и зоологи, занимающиеся ими профессионально, легко отличат пожилую особь от молодой: «старики» менее активны, их кожа гораздо светлее, тоньше и менее эластична; у них наблюдаются типичные для млекопитающих возрастные изменения, такие как атрофия мышц, остеоартрит, катаракта, фиброз почек… Иными словами, старение-то однозначно есть, вопрос лишь в том, зависит ли его скорость от возраста животного. И вот тут имеющихся данных не хватает для уверенного ответа – разные ученые делают различные выводы. И такой неопределенностью грешат почти все существа, которым приписывают пренебрежимое старение.
Согласно закону Гомпертца – Мейкхама, смертность является суммой независимого (параметр Мейкхама) и
Однако в природе есть и практически бессмертные создания, у которых во взрослом состоянии все ткани тела постоянно обновляются за счет большого количества стволовых клеток. Это низшие беспозвоночные животные – морские актинии, пресноводные гидры. Потенциально бессмертной считается медуза Turritopsis dohrnii, которая может в любой момент своей жизни под действием самых разных факторов «омолодиться», превратившись из свободноплавающей половозрелой особи в прикрепленного ко дну гидроидного полипа – более раннюю стадию своего жизненного цикла.
Как стареют люди?
Продолжительность жизни людей – вопрос особый. Люди умеют защищаться, у них есть медицина, потому они и живут долго по сравнению с животными сходных размеров. Но у них много старческих болезней – люди просто до них доживают. Ведь вряд ли неандертальцы, жившие в среднем не более 30 лет, страдали от болезни Альцгеймера.
Несмотря на впечатляющие достижения в медицине и здравоохранении, за последние десятилетия удалось з
Оценки, основанные на разных моделях старения, дают сходную цифру: средняя продолжительность жизни человека – примерно 85 лет. И в развитых странах мира она приближается к этой цифре. В этом случае 40 % людей должны дожить до 90 лет, около 5 % – до 100 лет, а единицы – еще дольше.
Существует много легенд о людях, которые якобы жили сотни лет. Однако информация о проживших более 120 лет не подтверждена надежными документами. Титул старейшего человека за всю историю до сих пор принадлежал француженке Жанне Кальман, которой на момент смерти в 1997 г. якобы исполнилось 122 года и 164 дня, но эти данные теперь подвергают сомнению.
Один из очевидных факторов, определяющих долгожительство, – наследственность. Исследования показали, что шансы ребенка стать долгожителем тем выше, чем больше у него родственников-долгожителей (родителей, братьев, сестер). Если родители человека прожили больше 80 лет, то для него вероятность попасть в категорию долгожителей будет в 1,7–1,8 раз выше, чем для потомка недолгоживущих. Но вклад генетики в долгожительство не так уж и велик – около 7 %, остальное определяют другие факторы. Специального гена, ответственного за долгожительство, не обнаружено. Очевидно, оно определяется большим набором генов, способствующих борьбе с болезнями и обеспечивающих хорошее состояние тканей и органов индивидуума.
Наблюдаемое сейчас замедление роста продолжительности жизни напоминает ситуацию в современном спорте. Ведь последние полвека в легкой атлетике рекорды почти не растут, что неудивительно: человек просто не может бежать со скоростью 100 км/час или прыгнуть на 10 м в высоту. То же самое и с продолжительностью жизни.
Растущие возможности медицины и улучшение условий жизни привели к тому, что в последние годы выросло число людей, достигающих возраста 90 и 100 лет. Однако преодолевших рубеж 120 лет нет вообще. И это при том, что в разных странах условия жизни людей очень различаются, как и смертность в соответствующих возрастных группах: к примеру, в Индии она намного выше, чем в Швеции. Ведь, казалось бы, чем благополучнее страна, тем выше должна быть и максимальная продолжительность жизни. Но нет: в разных странах она практически одинакова. Выглядит это так, как будто у продолжительности жизни есть некий предел. Все доступные простые способы продления жизни человек уже использовал, и положение не изменится, если только не будет изобретено что-то принципиально новое.
Зачем стареть и зачем жить долго?
Принципиальный вопрос: в чем биологический смысл смерти?
Биологи утверждают, что с точки зрения эволюции бессмертие вредно. Произведя потомство, родители становятся помехой, конкурируя с детьми за природные ресурсы. Да и эволюция зайдет в тупик, если все будут жить вечно. Однако вряд ли процессы старения организма являются эволюционно приобретенными адаптивными приспособлениями. Естественный отбор работает на генах, которые нужны молодым, когда они взрослеют и размножаются. Тех, кто прожил дольше и уже не передают свои гены потомству, эволюция игнорирует.
Обычно продолжительность жизни вида связана с его плодовитостью: чем интенсивнее животные размножаются, тем меньше живут. Это можно объяснить: маленькие беззащитные мыши в присутствии хищников и других угроз в любом случае долго не протянут, и чтобы выживать, им необходимо успеть произвести как можно больше потомков за минимальное время. Их гены должны обеспечить интенсивную короткую жизнь, эволюция работает именно над этим. Вредные мутации, которые оказывают негативное воздействие после окончания репродуктивного периода, могут накапливаться в их геноме, потому что они ускользают от действия отбора.
Американская домохозяйка Сара Де-Ремер Кнаусс входит в тройку самых долгоживущих людей мира, чей воз
Таким образом, повышение смертности от внешних условий приводит к эволюционному сокращению продолжительности жизни. И наоборот: те виды, которые не испытывают сильного давления среды (большого размера или живущие в защищенной среде), живут дольше. У них закрепляются мутации, способствующие долгожительству. Китам, слонам и голым землекопам требуются, к примеру, эффективные системы репарации (ремонта) ДНК, защищающие генетические программы от повреждений внешними факторами, и у них они сформировались. Короткоживущим мышам можно обойтись и менее эффективной репарацией, ведь за короткую жизнь гены серьезно пострадать не успеют.
Но есть, однако, способ доказать эволюции свою необходимость даже после завершения репродуктивного возраста – если вы принадлежите к социальному виду. Необычно долгую жизнь людей по сравнению с другими приматами объясняет гипотеза о «полезных бабушках». В отличие от других животных, детеныши людей долгое время совершенно беспомощны, им необходимы защита и уход. Для их успешного выживания нужны долгоживущие родители и прародители, поэтому семейные гены, позволяющие взрослым жить дольше, закрепятся и у их детей. Так что именно зависимость от родителей и дедушек с бабушками, похоже, способствовала закреплению мутаций, обеспечивающих человеку относительно долгую жизнь. Если бы не бабушки, мы жили бы в среднем 35–40 лет, как наши обезьяньи «родственники».
Молекулы старения
Относительно самой природы процесса старения у ученых нет единого мнения. Изучая процессы, которые происходят на уровне клеток и органов, ученые предложили несколько сотен теорий, объясняющих старение. Это свидетельствует прежде всего о многофакторности процесса и о том, что настоящего понимания его природы на сегодня нет.
Некоторые верят, что старение – не случайный, а запрограммированный процесс. Исходя из этого, они считают, что программу старения можно «взломать», как и любую другую, и таким образом старение «вылечить». Эту теорию очень любят биохакеры и продавцы «волшебных» препаратов, обещающие бессмертие уже сегодня, но не ученые. Самый простой и весомый аргумент против нее – тот факт, что примеры отказов такой программы неизвестны. Ведь рано или поздно она должна была бы, в результате мутаций, отказать у кого-то из людей, но появления бессмертных мы не наблюдаем.
Вторая теория, более правдоподобная, предполагает, что старение вызывается накоплением повреждений биомолекул и клеточных структур в результате воздействия множества повреждающих факторов. Так, в 1956 г. американский биохимик Д. Харман предложил теорию старения, согласно которой все эти беды происходят из-за свободных радикалов – реакционноспособных молекул, образующихся в организме под влиянием действия кислорода, радиоактивного излучения и как продукты естественного метаболизма.
Под действием ряда внешних и внутренних факторов, таких как УФ-излучение и свободные радикалы, молек
Свободные радикалы, а также различные химические вещества, попадающие в наш организм с продуктами питания или как загрязнители, могут вызывать повреждения ДНК и белков, изменять функционирование ферментных систем и свойства клеточных мембран, приводить к различным сбоям биохимических процессов. В результате выводятся из строя генетические программы, нарушаются энергетические процессы, функционирование иммунной и других жизненно важных систем организма. Все это способствует развитию патологических процессов, которые ускоряют приближение смерти.
Для самой важной молекулы в клетке – ДНК – имеются уже упомянутые системы репарации, от надежности и точности которых зависит способность организма противостоять постоянно возникающим повреждениям генома. Ослабление этих систем ведет к развитию онкологических заболеваний, а в некоторых случаях и к прогерии – ускоренному старению всего организма. Например, люди, страдающие синдромом Вернера (наследственным отсутствием одного из ферментов репарации), начинают стареть с 15–20 лет, а в возрасте 40 лет выглядят как восьмидесятилетние старики.
Так что старение, похоже, действительно связано с накоплением повреждений в организме. Но все ли они одинаково вредны?
Фермент теломераза «пришивает» новые нуклеотиды к теломерным участкам ДНК, укорачивающимся при делен
Одно время популярной стала теория «катастрофы ошибок», согласно которой накопление повреждений может привести к отказу любой из систем организма. В самом деле, в почтенном возрасте одни люди умирают от проблем с сердечно-сосудистой системой, другие становятся жертвой рака, кто-то поддается нейродегенеративным заболеваниям. Но есть ли на молекулярном или клеточном уровне мишени, особенно чувствительные к старению?
В конце прошлого века многим казалось, что на эту роль подходят теломеры, особые участки на конце хромосом, которые утрачиваются после определенного числа клеточных делений. Этот лимит, названный пределом Хейфлика в честь его первооткрывателя, составляет 40–60 делений для большинства человеческих клеток. С каждым клеточным делением теломеры укорачиваются, и только в половых, зародышевых и стволовых (недифференцированных) клетках они достраиваются специальным ферментом теломеразой, что позволяет этим клеткам непрерывно делиться, формируя ткани и органы. Окончательно дифференцированные клетки, такие как нейроны, могут жить десятки лет, но они не делятся и не производят теломеразу.
С возрастом из-за накапливающихся повреждений теломеры становятся короче даже в «неспециализированных» стволовых клетках, из-за чего обновление клеток в разных органах постепенно прекращается, что особенно критично для иммунной системы. У пожилых людей наблюдается обратная связь между длиной теломер и риском смерти от разных заболеваний.
Не так давно ученые обратили внимание на другую группу потенциальных виновников старения на клеточном уровне – ретротранспозоны. Эти мобильные генетические элементы, составляющие более трети человеческого генома, считаются «генетическими паразитами». Они не играют никакой известной роли, однако могут служить матрицей для синтеза РНК, с которой затем считывается фермент, синтезирующий новую ДНК-копию ретротранспозона и встраивающий ее в произвольное место в клеточной ДНК.
Способность ретротранспозонов «прыгать» по геному клетки основана на явлении «обратной транскрипции»
Неудивительно, что при нерегулируемой активности ретротранспозонов клетка быстро «идет вразнос», поэтому в молодых клетках за ними установлен строгий контроль: эти участки генома подвергаются метилированию и конденсации в плотные ДНК-белковые агрегаты (гетерохроматин), в которых синтез РНК невозможен.
Со временем из-за повреждений ДНК этот контроль ослабевает, уровень метилирования и конденсации снижается, и транспозоны начинают «прыгать» по всему геному, мешая его нормальной работе. Результат тот же, что и с теломерами: старение стволовых клеток и прекращение обновления критически важных тканей и органов. Интересно, что у человека и голого землекопа, по сравнению с мышами и многими короткоживущими млекопитающими, активных транспозонов очень мало.
Возможно, однако, что человек стареет вовсе не из-за повреждений ДНК. Еще один фактор, который может играть в этом большую роль, – это накопление повреждений межклеточного матрикса, среды, в которой находятся клетки. Матрикс состоит из биополимеров разной природы (белков, гиалуроновой кислоты и т. п.) и не только выполняет структурные функции, но и влияет на дифференцировку клеток.
Время жизни белков (эластина, коллагена) в составе матрикса измеряется годами и даже десятилетиями, так что со временем в них накапливаются повреждения, в частности сшивки между белковыми цепями. Это приводит к увеличению жесткости матрикса, что вызывает проблемы с сосудами и сердцем, способствует росту опухолей. Старение матрикса сказывается и на находящихся в нем клетках: если поместить молодые клетки в старый внеклеточный матрикс, они приобретут характеристики стареющих.
Кстати, у голых землекопов матрикс менее жесткий за счет повышенного содержания в нем высокомолекулярной гиалуроновой кислоты. Возможно, именно в этом один из секретов их долголетия?