Представьте, что перед вами стоит задача испечь суфле, но единственная инструкция — это список ингредиентов без указания пропорций, температур и времени приготовления.
Скорее всего, для получения идеального суфле потребуется огромное количество времени, усилий и ингредиентов. Это потребует множества проб и ошибок — подбора компонентов, изменения температуры и продолжительности выпекания. Но что, если бы у вас была модель, способная предсказать конечный результат ещё до того, как ингредиенты попадут в чашу для смешивания? Это не только сэкономило бы недели экспериментов, но и позволило бы понять, почему суфле поднялось или опало, и откуда взялась его текстура.
Исследователи из Института передовых наук и технологий Бекмана (Beckman Institute for Advanced Science and Technology) не пекут суфле в буквальном смысле. Вместо этого они разработали вычислительную модель, которая анализирует химический "рецепт" создания полимеров, обеспечивая прогнозируемый контроль над самоорганизацией материалов, что позволяет получать новые текстуры и свойства.
«Это означает, что производители могут проектировать и моделировать материалы с заданными характеристиками — повышенной прочностью, меньшим весом или новыми функциями — ещё до того, как химикаты будут смешаны в лаборатории», — объясняет Джеффри Мур, директор Института Бекмана и профессор химии Иллинойского университета в Урбана-Шампейн.
Междисциплинарную команду возглавили Филипп Гюбель, исполнительный заместитель декана инженерного колледжа Грейнджер и профессор аэрокосмической инженерии, Джеффри Мур, а также ведущие исследователи — аспирантка Анна Крамблитт (материаловедение и инженерия) и постдок Дональд Бистри (аэрокосмическая инженерия). Их работа опубликована в журнале *Proceedings of the National Academy of Sciences*.
Фронтальная полимеризация — это метод быстрого превращения мономеров в полимеры за счёт распространения локализованной волны химической реакции. Полимерные материалы включают пластик, каучук и смолы. Мур сравнивает этот процесс с грозовым фронтом, а разработанную модель — с метеопрогнозом, предсказывающим путь шторма.
Жидкая смесь химических веществ при нагревании превращается в твёрдое вещество, и эта реакция распространяется подобно погодному фронту. Метод представляет собой химическую систему, в которой тесно связаны процессы реакции и теплопереноса.
Команда сосредоточилась на метатезисной полимеризации с фронтальным раскрытием кольца (FROMP) — новом методе создания настраиваемых материалов с различными формами и функциями путём реактивной обработки.
«Фронтальная полимеризация может использоваться для получения полимеров, а при определённых условиях — и материалов с периодическим рисунком, аналогичных тем, что встречаются в природе», — говорит Крамблитт.
В отличие от других синтетических методов, которые требуют сложных, многоступенчатых и трудоёмких процессов, FROMP позволяет материалам самоорганизовываться, как это происходит в природных системах.
Узоры в природе встречаются повсеместно: волнистые песчаные дюны, ветвящиеся деревья и кровеносные сосуды, фрактальные структуры, оптимизирующие распределение ресурсов, или спирали, наблюдаемые в ДНК, морских раковинах и ураганах. Эти структуры возникают из взаимодействия множества мелких компонентов без централизованного управления.
Многие природные узоры связаны с функциональностью. Например, полосы зебры помогают в терморегуляции и маскировке, а чередование жёстких и гибких участков на крыльях стрекоз делает их одновременно прочными и манёвренными.
Вдохновлённая такими проявлениями эмерджентного поведения в биологических системах, команда разработала интегрированную вычислительную и экспериментальную платформу для изучения и управления формированием узоров в синтетических материалах, полученных методом фронтальной полимеризации.
«Подобно балансировке гирь на весах, мы показали, как небольшие изменения в химическом равновесии могут нарушить баланс между кинетикой реакции и теплопереносом, что приводит к формированию узоров. В каком-то смысле, мы нашли рецепт создания материалов с заданной структурой», — объясняет Бистри.
Технология FROMP позволяет точно контролировать ключевые этапы полимеризации: ингибирование, инициирование и распространение. Изучая химические процессы на каждом этапе, исследователи выяснили, что сочетание равновесной и неравновесной динамики определяет формирование структуры в синтетических материалах.
Они также определили особое химическое равновесие, которое управляет формированием структуры во время полимеризации. Используя химию и термодинамику, команда инициировала экзотермические, самоподдерживающиеся реакции. Баланс между тепловыделением, кинетикой и теплопереносом обеспечивает устойчивое распространение фронта реакции и образование однородного материала.
Однако при изменении состава или теплового воздействия равновесие нарушается, и фронт становится неоднородным, что приводит к изменению микро- и макроструктуры материала. Например, можно получить материал с чередующимися полосами жёсткости и гибкости.
Продвигаясь дальше, команда интегрировала компьютерное моделирование, создав модель FROMP, основанную на принципах химической кинетики. Это позволило глубже понять, как возникают структуры в синтетических материалах, полимеризованных фронтально.
Таким образом, вместо того чтобы "выпекать" тысячи образцов в поисках идеального, учёные разработали модель, которая предсказывает, как изменения в рецептуре и температуре повлияют на конечный результат ещё до начала эксперимента.
«Я в восторге от той свободы в дизайне, которую даёт наше понимание системы. Это открывает двери для множества новых экспериментов. Я с нетерпением жду возможности создавать материалы с разнообразными узорами и изучать их поведение», — говорит Крамблитт.
Команда надеется использовать полученные знания для создания узорчатых материалов с настраиваемыми свойствами, имитирующими природные, чтобы добиться большей прочности и функциональности.
В сотрудничестве с исследователями из Массачусетского технологического института — Рафаэлем Гомесом-Бомбарелли и Лорен Чуа, специалистами по моделированию на основе теории функционала плотности (DFT), Гюбель планирует объединить их подход с моделью FROMP. Это позволит создавать модели для широкого спектра материалов и оптимизировать их свойства.
Систему моделирования можно сравнить с кулинарной книгой, а DFT — с информацией об ингредиентах. Чтобы рецепт работал, его нужно откалибровать, зная, например, энергетические характеристики каждого молекулярного компонента.
«Благодаря этой работе мы получаем возможность связать атомарный уровень с макроскопическим, чтобы разрабатывать экологически чистые материалы с помощью вычислений. Теперь мы можем создавать новые рецептуры катализаторов, мономеров и ингибиторов с нуля, что открывает путь к новым химическим направлениям», — говорит Чуа.
Это расширяет возможности проектирования реактивных, самоорганизующихся систем и позволяет создавать экологичные, биоинспирированные материалы с улучшенными свойствами.