Проблема:
Пусть f(x)=x↑↑n, где n - нечетное натуральное число. Для каких n функция f(x) монотонно возрастает? Примечание: используется стрелочная нотация Кнута.
Я думаю, что для любого нечётного n функция f(x) монотонно возрастает, но я не смог это доказать. Я считал производную, но это не помогло. Напишите, если сможете продвинуться в этой проблеме.
По пути я придумал интересную задачу: Найдите наибольшую константу с такую, что для любых х>0 и натурального n выполнялось неравенство x↑↑(2n)>c.
У меня есть еще одна задача, которая, правда, не совсем относится к теме: Решите уравнение a↑↑b=c↑↑d в натуральных числах.
Напишите в комментарии какие-нибудь задачи, связанные с нотацией Кнута.