Сообщество - Лига Палеонтологии

Лига Палеонтологии

2 407 постов 15 093 подписчика

Популярные теги в сообществе:

386

Вы спрашивали о палеонтологии.

У Лиги Палеонтологии день рождения, и вчера мы попросили вас задать вопросы о том, что бы вы хотели узнать о палеонтологии. Орфография вопросов сохранена)


Вопрос:
Палеонтология на других планетах – фантастический миф или возможная реальность?


Отвечает @MartinDont:

Поиск жизни на других планетах, следов её прибывания и изучения её возможной эволюции (что по сути частично является космопалеонтологией) не просто возможная реальность, а сегодняшний проект NASA. Цель программы NASA по экзобиологии и эволюционной биологии заключается в том, чтобы понять, как произошла жизнь, какова была её дальнейшая эволюция, как она распространялась во Вселенной и какое у нее будущее. Исследования сосредоточены на происхождении и ранней эволюции жизни, на её потенциальной адаптации к различным средам, и изучении того, какие могут быть последствия для жизни в условиях, отличающихся от земных. Эти исследования проводятся в составе текущего проекта NASA по изучению нашей звёздной системы и определении её биосигналов на Земле. Никакой фантастики

https://hi-news.ru/science/kak-zhizn-stala-slozhnoj-i-mozhet...

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Если бы один миллион лет назад на Земле вымерла какая-нибудь разумная цивилизация, сравнимая по развитости с нынешней, то какие свидетельства их разумности могли бы дойти до нас?


Отвечает MartinDont:

Развитая цивилизация подразумевает хорошо организованный социум с налаженным производством предметов потребления. Хоть миллион лет назад, хоть десять, но следы подобных цивилизаций остались бы в земле в виде культурного слоя в огромных количествах. Огромные промышленные комплексы из стали (а любая цивилизация так или иначе должна использовать столь практичный и легкодобываемый материал как сталь) и прочих металлических сплавов обязательно оставили бы свои следы в недрах Земли. Инструменты, отходы, окаменелые остатки сельхоз животных и сами останки людей не исчезают бесследно даже за миллионы лет. В 2016 году были найдены примитивные каменные орудия возрастом более миллиона лет, что ж уж говорить о промышленных комплексах. http://paleonews.ru/new/844-homovs

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Какова вероятность найти образец, который не будет вписываться в существующее дерево эволюции?


Отвечает MartinDont:

Ежедневно находятся новые виды, роды и даже семейства, которых ещё нет на эволюционном древе. Постоянно проходят таксономические исследовании, перемешивающие родословную организмов. В 2018 году стартовал проект по изучению филогении птиц, что сулит большими сюрпризами. Открываются новые замкнутые экосистемы, где организмы обособленно от остального мира эволюционировали миллионы лет, как например чёрные курильщики. Чёрные курильщики – это такие гидротермальные источники, выбрасывающие воду температурой 350-400 градусов в океан под большим давлением. Сама вода перенасыщена тяжёлыми металлами. На удивление биологов, чёрные курильщики оказались настоящими оазисами жизни. Организмы вокруг курильщиков не только приспособлены к экстремальным условиям, но и живут без света вовсе, а питаются серой.

А если о говорить о невероятных организмах, то шанс найти что-то подобное мал. Мы уже имеем хорошее представление о том, как протекает эволюция. Сильно удивить нас могут замкнутые экосистемы и их обитатели.

Также мы можем найти новые группы животных, о которых мало что знаем, и которые буду сильно выделяться на фоне уже изученных организмов (таких, как вендобионты https://ru.wikipedia.org/wiki/Проартикуляты). Их неясное положение в эволюционном древе — временно. Всё встанет на свои места, как только мы получим достаточное количество ископаемого материала.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Является ли любительская палеонтология легальной? Планирую поехать в Ундоры, посоветуйте пожалуйста, как найти что- нибудь интересное, и какие инструменты стоит взять?


Отвечает: PaleoHunters.ru

Понятие любительской палеонтологии очень неточное. Проводить раскопки без лицензии категорически запрещено. Карается подобное огромными штрафами в сотни тысяч рублей и тюремным заключением. С другой стороны, поверхностный сбор разрешён. Можете спокойно собирать аммонитов и трилобитов в карьерах, что лежат на самой поверхности. И вновь же, с другой стороны, поверхностный сбор без лицензии запрещён в заповедных зонах, коих очень много в Ульяновской области. Уголовных и административных статей для наказания чёрных копателей очень много.

https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%BB%D0%BE%D0%B2...

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Сколько мог жить динозавр?


Отвечает MartinDont:

Сложно судить о сроках жизни животных, чей метаболизм для нас неизвестен. Но у нас есть годичные кольца на костях. Разные динозавры взрослели по разному. Например, тираннозавр в 20 лет становился взрослой особью, а знаменитый тираннозавр Сью в свои 28 лет была уже старушкой. Гадрозавры переходили во взрослую стадию в 15 лет. Гигантским зауроподам с их предположительно вялым метаболизмом дают десятки лет жизни, а небольшим и активным дромеозавридам всего 10-15 лет.

https://www.ncbi.nlm.nih.gov/pubmed/15306807?dopt=Abstract

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Как появилась жизнь на земле?


Отвечает DragonSpace:

Для начала стоит ответить на вопрос: когда появилась жизнь?

В сентябре 2015 года национальная академия наук США выложила результаты исследования изотопов углерода, в которых, по мнению учёных, были обнаружены следы биологической активности. Этому углероду более 4 миллиардов лет. Наша планета недолго оставалась одинокой и примерно через 500 млн лет после зарождения самой Земли, зародилась и жизнь на ней.


Теорий появления жизни на Земле великое множество, но рассмотрим наиболее вероятную.


У нас три основных критерия для зарождения жизни:

- наличие определённых металлов в концентрациях, превышающих фоновые (цинк, кобальт, марганец),

- наличие фосфора, без которого цепочки ДНК и РНК не возникли бы

- солнечный ультрафиолет,

- наличие воды, но в меру.

Такому набору условий чётко отвечает только горячие источники вблизи вулканов, а именно так называемые грязевые котлы, или фесселиты.

Правда, современные грязевые котлы содержат много серной кислоты, которая получается при реакции сероводорода с кислородом воздуха, и практически необитаемы. Но в древние эпохи, когда кислорода в атмосфере еще не было, грязевые котлы должны были иметь нейтральную среду и быть пригодными для жизни.

А при ближайшем рассмотрении этих котлов оказалось, что они предоставляют почти всё необходимое для зарождения жизни:

• среду, обогащенную калием, фосфором и необходимыми микроэлементами;

• местообитание со встроенным источником тепла, с практически постоянными условиями независимо от капризов погоды;

• пористые минеральные осадки, работающие в качестве катализаторов и предоставляющие огромное количество раздельных микроотсеков для обитания доклеточных форм жизни;

• испаряющиеся лужи, в которых могут накапливаться органические вещества и благодаря высокой концентрации солей и формамида может идти образование цепочек РНК и белков,


Никакие другие местообитания не обладают сразу всеми этими достоинствами. Например, в «курильщиках» нет обогащения калием и фосфором, нет ультрафиолета и нет накопления веществ в испаряющихся лужах. Так что грязевые котлы наземных геотермальных полей на сегодня представляются самым вероятным местом появления жизни.

Ответ преимущественно взят у @2diesel, который отлично законспектировал книгу М. Никитина Происхождение жизни. От туманности до клетки".

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Как появились млекопитающие?


Отвечает DragonSpace:

Млекопитающие произошли от Синапсид, древних четвероногих, процесс их появления называется маммализация териодонтов(один из множества эволюционных ветвей синапсид). Появились млекопитающие после пермь-триасового великого вымирания примерно 225 млн лет назад, напомню, что динозавры появились примерно 230 млн лет назад. Первые млекопитающие всё ещё отдаленно напоминали рептилий, яйцекладущие, без развитого мозга, но уже с активной терморегуляцией, и 4хкамерным сердцем.

Молочные железы возникли из потовых желез, и изначальная функция была скорее в выпаивании детенышей, чем в выкармливании.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Рыбы - монофилетический таксон или нет?


Отвечает DragonSpace:

Чтобы зваться монофилетической, группа должна включать предка и его потомков.

Таксон "Рыбы" не является монофилетическим, так как не включает амфибий и амниот.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Был ли у вас когда нибудь страх, что при исследовании какого-нибудь нового, неисследованного вида условного трилобита тот окажется в состоянии сохранять энергию в режиме "гибернации", а после пробуждения накинется на вас а-ля лицехват?


Отвечает DragonSpace:

Жизнь строится по усложнению, от примитивных существ, к более прогрессивным. Чем раньше жил какой-либо вид, тем он вероятно более примитивен(идея тем точнее, чем больше между двумя сравниваемыми видами прошло времени).

И так как до сих пор ни у кого на планете не обнаружены такие необычные способности, никто не ожидает найти трилобита в гибернации.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Можно ли сказать, что мы состоим из миллиарда других живых существ (людей, живших ранее, динозавров, насекомых и тд)?


Отвечает DragonSpace:

Можно сказать, что мы состоим из миллиарда тех же атомов, которые раньше были частью других живых организмов. Как говорил Муфаса: Все мы связаны в великом круге жизни.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Скажите пожалуйста, что есть нефть? Всё таки динозавры или планктон?


Отвечает DragonSpace:

Доминирующая биогенная теория гласит, что нефть и природный газ образовались из остатков растительных и животных организмов в ходе многоступенчатого, длящегося миллионы лет процесса. Сырьём для образования нефти на 99.99% служили остатки зоопланктона и водорослей. Подробнее:

https://pikabu.ru/story/proiskhozhdenie_nefti_trupyi_dinozav...

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Почему до ледникового периода зверье было таких огромных размеров? И после ледникового, так и не появилось больше крупных животных, кроме китов, даже в местах с благоприятным климатом, где нет зимы и много растительности.


Отвечает DragonSpace:

На нашей планете то и дело происходили различные катаклизмы, которые вели к освобождению и перестройке экологических ниш. Каждое животное становилось огромным, потому что осваивая новую нишу, приходилось жестко адаптироваться к меняющимся условиям, так, Мезозой славился гигантизмом динозавров, а Кайнозой – эра правления млекопитающих. Гигантизм сам по себе вполне естественный эволюционный путь доминирующей группы животных – млекопитающих в данном случае. Конкретно механизм гигантизма развивается через соревнование по выживанию хищника и его жертвы – одни растут, чтобы лучше защищаться, вторые, чтобы догнать первых и проще убивать, в конце концов такая гонка приводит самих животных в тупик, тк те же самые экологические ниши продолжают меняться и распадаться, а гигантам приспосабливаться к новым условиям очень сложно.


К слову, последний ледниковый период не закончился, закончилась ледниковая эпоха ледникового периода, сейчас же межледниковье ледникового периода.

Если брать гигантов, живших недавно, то человек, своим расселением по планете уничтожил множество видов, большинство из которых и так были на грани вымирания, но с тех пор прошло слишком мало времени, для того, чтобы ниши заполнились заново.

А если брать весь кайнозой в целом, то исчезновению гигантов способствовала два ключевых фактора: резкое изменение условий окружающей среды – катаклизм, и стратегия родственной стайности оказалась намного эффективнее гигантизма, и успешно его вытеснила.


Поэтому последний ледниковый период/эпоха не заслуживают такого отношения к себе, ведь и сейчас на земле полно гигантов – два вида слонов, носороги, жирафы, киты и главный рекордсмен - синий кит, а самое большое сухопутное животное Индрикотерий существовал задолго до последнего похолодания.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Черепахи и крокодилы выжили после падения метеорита (их ближайшие предки) благодаря панцирям и чешуе?


Отвечает @p4hshok:

Черепахам и крокодилам нужно гораздо меньше пищи чем динозаврам.

За один раз крокодилы могут съесть до 23 % от массы своего тела. До 60 % съеденной пищи у крокодилов может переходить в жир, запасаемый в специальных полостях между мышцами, что позволяет им переживать длительные периоды голодовки. Будучи холоднокровными животными, крокодилы требуют примерно в пять раз меньше пищи, чем теплокровные хищники такого же размер. Крокодилы хорошо адаптированы для длительного голодания. Без еды взрослые крокодилы в случае крайней необходимости могут обходиться примерно до одного года. Даже только что вылупившиеся детеныши за счет понижения уровня обмена веществ способны прожить без пищи около 58 дней, потеряв при этом 23 % от своей массы.

Вопрос:
Ближайший общий предок всех членистоногих - кто он? От кого произошли насекомые?


Отвечает p4hshok:

Главная проблема последнего общего предка всех членистоногих в том что его может просто не быть, так как на границе венда и кембрия артроподизация https://bio.wikireading.ru/3905 (накопление признаков членистоногих) происходила параллельно и достоверно определить предка членистоногих невозможно потому что их может быть несколько.

Палеонтологическая летопись так же не даёт ответа так как в кембрии у нас уже есть широчайшее разнообразие членистоногих, а в венде только вендобионты родственное отношение которых к многоклеточным животным крайне спорно.

Сприггина например вполне напоминает трилобита, но симметрия скользящего отражения (https://ru.wikipedia.org/wiki/Скользящая_симметрия) ставит учёных в тупик и заставляет усомниться в родственности вендобионтов к двустороннесимметричным животным.

Есть попытки реконструировать его внешний облик: Последний общий предок членистоногих реконструируется как сегментированный организм, каждый сегмент которого покрыт собственным склеритом и несёт пару конечностей. Вопрос о типе этих конечностей остаётся открытым. Это прачленистоногое имело на брюшной стороне рот, а на передней части спинной — глаза. Антенны были расположены перед ртом. Питалось оно, вероятно, пропуская через себя донные осадки.

Вероятнее всего общий предок вех членистоногих, если вообще существовал, должен быть из позднего докембрия небольшого размера да ещё и без полноценного твёрдого покрова.

Новейшие морфологические сравнения и филогенетические реконструкции на основе геномных последовательностей указывают, что насекомые являются потомками ракообразных, а не сестринским таксоном. Это заключение хорошо согласуется с палеонтологическими данными. Однако морфологические и молекулярные данные не согласуются при определении ближайших родственников насекомых среди ракообразных: морфологические данные указывают на связь насекомых с высшими ракообразными, а молекулярные — с жаброногими.


В соответствии с последней гипотезой эволюционная ветвь насекомых отделилась от ракообразных в позднем Силуре — раннем Девоне. Эта оценка согласуется и с палеонтологическими данными, и с оценкой на основе молекулярных часов.

Так же лекции про эволюцию членистоногих:

https://www.youtube.com/watch?v=csLewT3aMb8

https://www.youtube.com/watch?v=-OC46Vjg0jU

https://www.youtube.com/watch?v=1SQZ5wizs64

https://www.youtube.com/watch?v=AtLD_5iIuDA

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Почему вымерли ракоскорпионы и трилобиты?


Отвечает p4hshok:
Потому что были вытеснены более прогрессивными видами, а также подверглись давлению нескольких массовых вымираний. Рыбы обзавелись панцирями и челюстями стали конкурировать с ракоскорпионами и даже охотиться на них постепенно вытесняя их в мелкий размерный класс. К каменноугольному периоду остались лишь пресноводные виды. Окончательно вымерли во время великого пермского вымирания.

С трилобитами та же история архаичные и некогда многочисленные они так же не выдержали давления новых прогрессивных видов и массовых вымираний.

До перми доживает только один подкласс мелкоразмерных Проетида https://en.wikipedia.org/wiki/Proetida Обрывается славная история трилобитов так же пермским вымиранием.

Разнообразие трилобитов в геохронологической шкале.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост
Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Я читал, что в процессе эволюции природа в короткий срок создаёт множество видов, потом в течение некоторого времени большинство их вымирает, остаются самые приспособленные. подсчитывали ли учёные КПД эволюции с точки зрения расхода ресурсов?


Отвечает p4hshok:

Нет никому это не нужно, вещества находятся в круговороте и интересно это может быть только математикам для построение соответствующей модели, чисто для тренировки мозгов.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Есть ли виды которые пережили ледняковый период и как им это удалось?


Отвечает @AntonPerm

Тут нужно уточнить, какой именно ледниковый период имеется ввиду, так как их было насколько, но скорее всего, как я понимаю, имеется тот, который показан в мультике. На самом деле, правильно этот этап оледенения называется ледниковая эпоха четвертичного ледникового периода. Эта эра закончилась на столь давно, примерно 9000 лет назад, поэтому большинство животных, которых мы видим сейчас, можно сказать, пережили это похолодание, проще назвать тех, кто не пережил его, например, шерстистые носороги. Даже последние мамонты вымерли 3500 лет назад, а значит и они пережили эту эпоху. Ну и, конечно, человек, как вид, превосходно пережил это великое оледенение. 

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Реально ли собрать небольшую экспедицию в ту же Азию, порыть-поискать кости дино и, в случае находок, перевезти через границы и оставить их себе?

Отвечает AntonPerm:

Азия большая, и очень сильно насыщена окаменелыми остатками динозавров, расскажу на примере 2 стран - Монголии и Казахстана. В Монголии очень строгие законы касаемо раскопок, туда не пускают обычных туристов, а если приглашают палеонтологов из-за рубежа. то вывозить находки строжайше запрещено, можно даже принудительно остаться в Монголии на несколько лет дольше запланированного. В Казахстане-же, Вас с удовольствием свозят на меловой карьер, где можно поискать разнообразные окаменелости. Как дело происходит в Китае, если честно не скажу, но мне кажется, что примерно как в Монголии. а

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
Что познавательное и интересное можно на эту тему посмотреть детям-дошкольникам?


Отвечает AntonPerm

Для дошкольников отлично подойдёт мультфильм "Поезд динозавров", там и описаны приключения героев и даны комментарии палеонтолога. Дошкольникам постарше можно включать фильмы BBC наподобии "Прогулок с динозаврами"

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:
как вообще найти какую то окоменлость?


Отвечает AntonPerm

Для этого нужно изучить геологическую карту местности, на которой Вы собираетесь проводить раскопки, тщательно подготовить специальные инструменты и изучить ту фауну и флору, типичную для данной местности того периода, ну, или просто внимательнее смотреть вокруг, а особенно под ноги. Зачастую окаменелые остатки можно найти даже на газоне. Ну и конечно, рекомендую посетить карьеры, как правило, там можно найти много интересного.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Жена выедает мне мозг, чтобы я завёл в вк паблик с названием "Говно мамонта" и выкладывал там палеонтологические байки и занимательные факты. Стоит ли мне это сделать?


Отвечает AntonPerm

Почему бы и нет) Палеонтология распространена по всему миру и повсюду происходит очень много любопытного и весёлого, поэтому почитать об этом будет весьма интересно. А начать можно с выкладывания историй в нашу "Лигу палеонтологии", посмотреть, так сказать, реакцию публики.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

объясните, почему раньше всё так классно окаменевало, а теперь тупо гниёт без следа?


Отвечает AntonPerm

Нет никакой разницы между сохранностью организмов тогда и сейчас. Очень многое что сгнило много миллионов лет назад мы уже никогда не найдём. Чтоб до нас дошли окаменелые остатки животных и растений должно сложиться множество факторов. Например если динозавр умер в лесу, то, скорее всего, природа переработает его тело чуть менее чем полностью, но если тот самый динозавр умрёт в пустыне или в болоте, то мы сможем увидеть то, что от него останется. Если перенестись на 60 миллионов лет вперёд, то мы обнаружим остатки современных животных примерно в том виде, в котором мы находим динозавров.

В пример можно привести знаменитую малахитовую мышь, попав в подходящие условия органика довольно быстро заменилась минералами, теперь можно назвать эту мышь окаменелостью.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Вопрос:

Расскажите, пожалуйста, как вот столько рыб сразу отпечаталось?

Как вообще отпечатываются существа в породах?

Да, я тупой несмышленыш


Отвечает AntonPerm

Как уже говорил выше, для того чтоб до нас дошли окаменелые остатки, должно сложится много факторов. В данном случае, скорее всего, рыбы во время разлива заплыли в заводь, которая при отливе стала отрезана от реки, там быстро кончился кислород, и весь косяк упокоился на дне, где и был занесена илом.

Примерно так и проходит фоссилизация(окаменение), за много лет органика замещается на неорганику(псевдоморфоз), и те кости, которые мы видим, по сути являются камнем по химическому составу.

Вы спрашивали о палеонтологии. Палеонтология, Интересное, Познавательно, Вопрос, Ответ, Прошлое, Доисторические животные, Сборник, Видео, Длиннопост

Ответили почти на все вопросы, если что то осталось непонятным, добро пожаловать в комментарии)

Показать полностью 23 2
110

Протерозух

Протерозухии (лат. Proterosuchidae) — семейство пресмыкающихся из группы Archosauriformes, находятся в основании ветви, ведущей к более развитым истинным архозаврам.Впервые появились в конце пермского периода, вымерли в триасовом периоде (252,3—242,0 млн лет назад)

Протерозух Zbrush, 3ds Max, Фотоманипуляции, Триасовый период, Доисторические животные

Протерозух был наикрупнейшим сухопутным животным мира в начале Триаса, но по современным меркам он не был крупней комодского варана. С длинными челюстями, мощной шейной мускулатурой, короткими лапами и длинным хвостом он напоминал примитивного крокодила, и действительно вёл образ жизни схожий с образом жизни нильского крокодила современной Африки.

Длинный и сильный хвост протерозуха был прекрасно приспособлен для плаванья, и позволял ему делать это быстро. Тем не менее, у этого пресмыкающего были и крепкие ноги, которые помогали ему спокойно ходить по суше. Имея возможность передвигаться и по суше и в воде было очень полезной адаптацией, и позволила протерозуху контролировать температуру своего тела греясь на солнышке или охлаждаясь под водой. Это также увеличивало количество животных, на которых он мог охотится.

Протерозух Zbrush, 3ds Max, Фотоманипуляции, Триасовый период, Доисторические животные

Как и некоторые современные крокодилы, протерозух наверное нападал из засады. Т.е., вместо активного поиска корма, он оставался в одном и том же месте весь год, поджидая, пока пища не приходила к нему. Такой образ жизни сохранял ему немало сил, и давал ему возможность есть пореже. Более того, протерозух мог жить по несколько месяцев без еды.

Хотя он мог жить и активно передвигаться в воде, протерозух предпочитал охотится на сухопутных животных а не рыб.

источники:http://wiki-org.ru/wiki/%D0%9F%D1%80%D0%BE%D1%82%D0%B5%D1%80...

https://vk.com/page-21260865_51201232

Показать полностью 1
212

Керигмахела

Керигмахела Палеонтология, Наука, Копипаста, Elementy ru, Длиннопост

Источник.

На этой иллюстрации, взятой из недавней статьи в Nature Communications, изображена керигмахела (Kerygmachela) — яркий представитель кембрийской фауны.


Широко известно, что кембрийский период был в истории многоклеточных животных эпохой настоящего взрыва новых форм. Палеонтологи, приступившие в XX веке к изучению фауны раннего кембрия, встретили там множество удивительных живых существ — иногда близких к современным группам животных, а иногда и настолько необычных, что их не удавалось без серьезных натяжек отнести к какому бы то ни было современному типу. Бывали случаи, когда эта необычность даже преувеличивалась. Например, галлюцигению вначале сгоряча проинтерпретировали как существо «с семью парами ножек снизу и семью гибкими щупальцами сверху, каждое из которых, по-видимому, завершалось ротовым отверстием» — именно так она описана в замечательной научно-популярной книге Дэвида Аттенборо «Жизнь на Земле». Дальнейшие исследования показали, что галлюцигения — вовсе не такое уж невероятное чудовище. Просто при первом описании ее спинную сторону перепутали с брюшной, приняв на отпечатке гибкие ноги за непарные щупальца, а находившиеся на спине шипы — наоборот, за ноги (см. Палеонтологи выяснили, как была устроена голова галлюцигении, «Элементы», 26.06.2015). Сейчас галлюцигению удалось изучить детально, и стало ясно, что, несмотря на ее вполне реальное внешнее своебразие, никаких мистических тайн она в себе не содержит: это всего лишь родич современных онихофор.


Палеонтологическая «карьера» керигмахелы не такая захватывающая. Ошибками и сенсационными переописаниями она не изобилует. Что, впрочем, не отменяет уникальности этого животного, особенно если мерить его мерками современного мира. Керигмахела была обнаружена в начале 1990-х годов в гренландском местонахождении Сириус Пассет (Sirius Passet) и сразу попала в руки прекрасного специалиста по кембрийским беспозвоночным — Грэма Бадда (Graham Budd), заслуженная известность которого с тех пор только растет. Именно он дал керигмахеле научное название, составленное из греческих слов κήρυγμα — «призыв», «провозглашение» — и χηλή, обозначающего «копыто», «клешню» или «коготь». По словам Бадда, это название керигмахела получила в честь ее великолепных передних конечностей, усаженных выростами и шипами. В оригинале он охарактеризовал эти конечности прилагательным flamboyant, означающим «яркий», «вычурный» или — наиболее буквально — «пламенеющий», как в названии архитектурного стиля пламенеющая готика или старинных мечей с пламенеющим лезвием.


Так было образовано название рода. Но поскольку биологическая номенклатура — бинарная, то керигмахеле следовало дать еще и видовое название, которое Бадд произвел от фамилии Сёрена Кьеркегора — великого датского философа, основателя экзистенциализма. Он объяснил это тем, что Кьеркегор был постоянным жителем Копенгагена — города, где хранится типовой экземпляр. В соответствии с номенклатурными правилами, полное научное название керигмахелы выглядит теперь следующим образом: Kerygmachela kierkegaardi Budd, 1993. После названий рода и вида, как положено, следует фамилия первооткрывателя и год, когда было опубликовано первое описание.


Итак, что же керигмахела собой представляет? Это морское существо, отнюдь не гигантское, но и не слишком мелкое: длина типового экземпляра составляет 17,5 сантиметров. Тело членистое. Есть достаточно четко выраженная голова, несущая пару тех самых роскошных «пламенеющих» передних конечностей. Они похожи на усики насекомых или ракообразных, но сильно ветвятся. Туловище керигмахелы состоит из одиннадцати сегментов, на каждом из которых торчат в стороны крупные плоские парные выросты, похожие на лепестки или на наружные жабры. Функцию жабр они, скорее всего, и выполняли — что, впрочем, не мешало им заодно создавать подъемную силу и работать плавательными лопастями. Кроме того, на каждом сегменте у керигмахелы находится пара конечностей, предназначенных для хождения. Они представляют собой короткие выросты, подвижные, но без всякого намека на те сложные экзоскелетные сочленения, которым обязан своим названием тип членистоногих. Одним словом, ножки у керигмахелы устроены примерно так же, как у доживших до современности онихофор.


Рот у керигмахелы, как и следовало ожидать, расположен вблизи переднего конца тела (раньше считалось, что точно на переднем конце, но на самом деле чуть внизу — для специалистов по членистоногим и их древним родственникам это важно). Он довольно маленький, окруженный со всех сторон мелкими хитиновыми зубчиками. Никаких челюстей у керигмахелы нет. Это означает, что хищником она не была, а подбирала какие-то мелкие и пассивные пищевые объекты. Что касается передних конечностей, то они у керигмахелы хотя и длинные, но довольно слабые, и предназначались скорее для ощупывания окружающего пространства, чем для удержания добычи.


Глаза у керигмахелы были маленькие и простые. Никаких огромных сложных фасеточных глаз, характерных для многих современных членистоногих (и для некоторых их древних родственников тоже), у нее возникнуть не успело.


На заднем конце тела у керигмахелы находится длинный членистый хвостовой придаток, который был сначала описан как парный, но свежее исследование более полного материала показало, что на самом деле он, скорее всего, единственный и расположен точно посредине. Имеет ли это хоть какое-то принципиальное значение — пока неизвестно, но палеонтологи не были бы палеонтологами, если бы оставляли без внимания подобные детали.

Керигмахела Палеонтология, Наука, Копипаста, Elementy ru, Длиннопост

Реконструкции керигмахелы, сделанные ее первооткрывателем Грэхемом Баддом. Вверху — тело керигмахелы в разрезе, видны жаброподобные лопасти и ходильные ноги; длина масштабной линейки — 20 мм. Внизу — художественная реконструкция, изображающая, как предположительно выглядела керигмахела в естественной среде обитания. Иллюстрации из статьи G. E. Budd, 1998. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland)


Что же это за существо такое? Если бы современный человек, идя по берегу Белого, Северного или любого другого моря, увидел на мелководье плывущую керигмахелу, он — при условии, конечно, некоторой компетентности в биологии — скорее всего, принял бы ее за какое-то очень странное ракообразное. Однако, чтобы развеять это впечатление, было бы достаточно поймать керигмахелу и внимательно (лучше всего под бинокуляром) рассмотреть ее с брюшной стороны. Во-первых, у керигмахелы нет челюстей — значит, она не ракообразное. А во-вторых, у нее нет членистых ходильных ног, и это должно означать, что она вообще не членистоногое.


По современным представлениям керигмахела относится к одной из эволюционных ветвей, объединяемых понятием «стволовые эуартроподы» (см. Палеонтологи уточнили время появления первых членистоногих, «Элементы», 23.08.2018). Говоря попросту, это эволюционный уровень, предшествующий настоящим членистоногим.


В статье, где Грэм Бадд привел первое описание керигмахелы, есть один момент, примечательный с точки зрения истории науки (или «археологии знания», если воспользоваться выражением Мишеля Фуко). Завершая описание, Бадд демонстрирует гипотетическое эволюционное древо членистоногих и их ближайших родственников, которое выглядит следующим образом:

Керигмахела Палеонтология, Наука, Копипаста, Elementy ru, Длиннопост

Как видим, членистоногие здесь распадаются на две группы, связанные только через гораздо более древних общих предков. Это означает, что членистоногие — вовсе не единый тип. Откуда взялось такое мнение?


Напомним, что речь идет о статье, опубликованной в 1993 году. Бадд здесь совсем не оригинальничал — он следовал гипотезе дифилии (двойного происхождения) членистоногих, которая именно в тот момент была научным мейнстримом. Самым авторитетным сторонником этой гипотезы, а в большой мере и ее автором, была английская исследовательница Сидни Мэнтон (Sidnie Milana Manton), признанный крупнейший специалист по членистоногим и их эволюции. Сравнивая челюстной аппарат ракообразных и насекомых, Мэнтон пришла к выводу, что он устроен в этих группах слишком по-разному, чтобы предполагать их общее происхождение от предка, уже имевшего челюсти. Значит, этот общий предок был намного примитивнее. К тому же у разных членистоногих по-разному устроены конечности: у трилобитов, ракообразных и мечехвостов они двуветвистые (имеют жаберную ветвь), а у многоножек и насекомых — одноветвистые, чисто ходильные. В результате Мэнтон объединила многоножек и насекомых с онихофорами (которые вообще членистоногими не являются) в самостоятельный тип, получивший название Uniramia — одноветвистые. В противоположность одноветвистым, группа, в которую вошли ракообразные, трилобиты, мечехвосты и паукообразные, получила название Schizoramia. Согласно теории Мэнтон, Uniramia и Schizoramia — это два эволюционных ствола, которые достигли уровня организации членистоногих совершенно независимо друг от друга. Первые (одноветвистые) очень рано вышли на сушу, и в членистоногих они превратились, будучи исходно наземными организмами, а вторые (двуветвистые) долго эволюционировали в воде, где многие из них до сих пор и пребывают. Сторонники этой теории успели получить типично английское прозвище «мэнтонианцев».


В семидесятых и восьмидесятых годах XX века теория Мэнтон была очень популярна. Например, именно согласно взглядам «мэнтонианцев» излагается эволюция и система членистоногих в замечательной книге британских авторов «Беспозвоночные: новый обобщенный подход», русское издание которой вышло в 1992 году. Бадд просто последовал этому, предположив близость керигмахелы к эволюционному стволу «двуветвистых» (но не «одноветвистых»).


Однако судьба теории Мэнтон оказалась печальной. То, что против нее возникли чисто палеонтологические возражения, еще можно было бы как-то пережить. Но как раз в конце XX века сложилась и стала набирать силу молекулярная филогенетика, позволяющая в большинстве случаев проводить вполне объективную и независимую проверку гипотез о родственных связях живых организмов. Если бы онихофоры «вклинивались» в эволюционное древо членистоногих, разбивая его надвое, молекулярная филогенетика сразу бы это засекла. Но нет. На молекулярном древе членистоногие однозначно оказались единой группой, а онихофоры — ветвью, внешней по отношению к ним, в полном соответствии с классической точкой зрения и вопреки мнению «мэнтонианцев». И вот с этим контраргументом сделать нельзя уже ничего. На сегодняшний день мэнтоновская концепция дифилии членистоногих является хорошим примером «вымершей» гипотезы, которую больше никто не поддерживает.


Максу Планку приписывается такое высказывание: «ученые не меняют своих взглядов — они просто вымирают, а следующее поколение потом воспринимает новые идеи со студенческой скамьи». Вопреки этому мнению (которое, возможно, и было в основном верно лет сто назад), современное научное сообщество адаптируется к смене концепций очень быстро. Можно видеть, что принципиальное изменение представлений о происхождении членистоногих произошло при участии ныне живущего и продолжающего активно работать поколения ученых: они столкнулись с новыми фактами, от которых невозможно было отмахнуться, и просто вынуждены были скорректировать свои теоретические взгляды. И продолжают это делать. Деваться некуда: слишком быстро в современной науке идет накопление фактического материала. К палеонтологии, которая сейчас к тому же очень активно взаимодействует с другими дисциплинами, это уж точно относится.


Рисунок Ребекки Гелернтер (Rebecca Gelernter), опубликованный в статье T.-Y. S. Park et al., 2018. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head.


Сергей Ястребов

Показать полностью 2
109

Новый взгляд на доисторическую эпоху. Фильм 1. Заря эры млекопитающих

Палеонтологи долгое время считали, что млекопитающие, жившие в эпоху динозавров, размером были не больше мыши, и что их расцвет начался лишь после исчезновения динозавров.

Но в начале XXI века в Китае были найдены удивительно хорошо сохранившиеся окаменелости, которые показали, что млекопитающие были крупнее и разнообразнее, чем считалось раньше.

Детальный анализ их физических особенностей позволяет понять, каким образом им удавалось сосуществовать со своими плотоядными соседями и даже пережить их.

Показать полностью
95

Листрозавры

Листрозавры Zbrush, 3ds Max, Фотоманипуляции, Доисторические животные, Триасовый период, Копипаста

Листрозавры (лат. Lystrosaurus) — род дицинодонтов из семейства листрозаврид (Lystrosauridae), живших во время нижнетриасовой эпохи. Листрозавры были среди немногих дицинодонтов, выживших во время пермского вымирания

Листрозавры Zbrush, 3ds Max, Фотоманипуляции, Доисторические животные, Триасовый период, Копипаста

Они были доминирующими растительноядными той эпохи, дав своё имя первой зоне эпохи нижнего триаса (зона Lystrosaurus). Их кости обнаружены в Антарктике и на севере России, а также в Китае и Индии.От других дицинодонтов их отличает высокий укороченный череп с вынесенными наверх ноздрями и глазами. Длина черепа у разных видов от 12 до 40 см, длина тела могла достигать 2 м. Как и у многих других дицинодонтов, у листрозавров из всех зубов сохранились лишь два верхних клыка. Челюсти, вероятно, были одеты роговым клювом. Ноги короткие и массивные.


Листрозавров долгое время считали полуводными животными, вроде гиппопотамов. Сейчас предполагают, что они жили в полупустынях нижнего триаса и выкапывали пищу (возможно, корни растений) из земли с помощью клыков.


После пермского вымирания листрозавры сократили продолжительность жизни с 13 до 2—3 лет, уменьшили размеры до собаки средних размеров, стали раньше и чаще спариваться.


Листрозавры — возможные предки крупных триасовых дицинодонтов — каннемейерий.


источник:https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82%D1%80...

Показать полностью 1
19

Нашли на песчаном карьере ракушку.

На глубине около 10 метров при раскопках песчаного карьера в Амангельды на возвышенности выше уровня реки Тобол метров на 30 и в километровом растоянии от неё среди маленьких окаменевших тунельчиков найдена ракушка. Кто что может про неё сказать, чем она является?

Нашли на песчаном карьере ракушку. Ракушки, Моллюск, Находка, Окаменелости, Длиннопост
Нашли на песчаном карьере ракушку. Ракушки, Моллюск, Находка, Окаменелости, Длиннопост
Нашли на песчаном карьере ракушку. Ракушки, Моллюск, Находка, Окаменелости, Длиннопост
Нашли на песчаном карьере ракушку. Ракушки, Моллюск, Находка, Окаменелости, Длиннопост
Показать полностью 4
330

Как возникли жаберные щели?

Источник.

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 1. Жаберные щели у хрящевых рыб (китовой акулы — а и манты — б), у современного представителя бесчелюстных — речной миноги (в; справа — схема фронтального среза миноги, на котором видны энтодермальные жаберные мешки) и жабры у низших хордовых: ланцетника (г), асцидии (д), бочоночника (е). Фото с сайтов: funniestmemes.com, discoverymaldives.com, tumblr.com, faculty.baruch.cuny.edu

Все хорошо представляют, как выглядят у костных рыб (например, у щуки или окуня) жабры — они скрыты костяными крышками. У хрящевых рыб (акул и скатов) жаберные щели видны снаружи, они напрямую соединяют передний отдел кишечника с внешней средой (рис. 1, а, б). У более примитивных бесчелюстных позвоночных (например, у миног) это жаберные мешки — метамерные выросты кишечника, открывающиеся во внешнюю среду серией округлых отверстий по бокам тела (рис. 1, в).

Жаберные щели есть не только у позвоночных, но и у других подтипов типа хордовых. У ланцетников (небольших донных животных, похожих на маленьких рыбок, которые входят в подтип бесчерепных) жаберные щели представляют собой серию из более чем сотни метамерных отверстий, проникающих в кишечную трубку в передней половине тела (рис. 1, г). Есть жаберные щели и у еще одного подтипа хордовых животных — оболочников, которые так называются потому, что их тело заключено в оболочку из особого материала туницина, похожего на целлюлозу. Среди оболочников есть сидячие организмы — асцидии (рис. 1, д), а также плавающие в толще воды животные — бочоночники, сальпы, огнетелки и аппендикулярии (рис. 1, е). Все ископаемые хордовые тоже имели жаберные щели (рис. 2).

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 2. Ископаемые хордовые с жаберными щелями: а — Didazoon haoae (ранний кембрий), б — Haikouichthys ercaicunensis (ранний кембрий), в — Metaspriggina walcotti (средний кембрий), г — Astraspis desiderata (поздний ордовик), д — конодонты (ордовик-девон), е — Jamoytius (ордовик-силур). Фото с сайтов:, anthropology-news.org, tumblr.com, dinopedia.wikia.com, pvsm.ru


У хордовых животных жаберные щели служат не только для дыхания, но и для фильтрации, что позволяет извлекать из воды мелкие пищевые объекты. Так питаются не только оболочники и ланцетники, но и многие рыбы, в том числе и самая крупная из них — китовая акула (см. рис. 1, а).


Эволюция жаберных щелей представляет собой одну из самых увлекательных глав сравнительной анатомии позвоночных животных. По мнению К. Гегенбауэра, А. Н. Северцова, И. И. Шмальгаузена и других выдающихся сравнительных анатомов XIX–XX вв., с жаберными щелями связано развитие важнейших структур в челюстном аппарате, органах чувств и кровеносной системе. Но несмотря на это, до сих пор в зоологии не существует внятной гипотезы, объясняющей, как возникли столь таинственные, своеобразные органы — метамерные жаберные щели, напрямую соединяющие полость энтодермального кишечника с внешней средой.

Эволюция жаберных щелей у позвоночных

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 3. Эволюция жаберных дуг у позвоночных животных: желтым показаны губные хрящи, красным — челюстная дуга, фиолетовым — подчелюстная дуга и ее производные, голубым — жаберные дуги задних жаберных щелей и подчелюстной аппарат ([1; 2], с изм.)

У позвоночных жаберные щели имеют хрящевой или костный скелет — жаберные дуги (рис. 3). Одна из передних дуг у большинства позвоночных изменила свою функцию — превратилась в челюсти, благодаря которым все современные челюстноротые позвоночные (кроме миног и миксин) имеют возможность хватать, откусывать и пережевывать добычу. За челюстной жаберной дугой следует так называемая подчелюстная дуга. Между двумя этими дугами у хрящевых рыб (например, акулы) даже сохраняются рудиментарные жаберные щели — брызгальца. У большинства рыб подчелюстная дуга обеспечивает подвижную связь челюстей с черепной коробкой. Челюсти как бы подвешены снизу к черепной коробке с помощью парных «подвесок» (по-латыни эти хрящи или косточки называются hyomandibulare).


У позвоночных жаберные щели и кровеносные дуги связаны между собой (рис. 4), ведь жабры — основной орган газообмена: к ним притекает бедная кислородом кровь, в них она обогащается кислородом и далее несет его ко всем органам животного.

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 4. Эволюция жаберных кровеносных дуг у водных и наземных позвоночных ([2], с изм.)

У наземных позвоночных во взрослом состоянии жаберных щелей нет, но элементы жаберного скелета, естественно, сохраняются. У таких животных (амфибий) верхняя челюсть прирастает к черепной коробке. «Подвески» освобождаются от функции прикрепления челюстей к черепу и приобретают новую функцию: они превращаются в слуховые косточки — стремечко, а полость брызгальца становится полостью среднего уха. Скелет последующих жаберных щелей превращается в подъязычный аппарат, щитовидные хрящи, хрящи гортани и трахеи. Жаберные кровеносные дуги водных позвоночных преобразуются у наземных в главные сосуды кровеносной системы — сонные артерии, дуги аорты и легочные артерии (рис. 4).


Даже в развитии человеческого зародыша закладываются жаберные щели. Хрящевые зачатки жаберных дуг дают важнейшие элементы скелета человека — челюсти, слуховые косточки, шиловидный отросток височной кости и хрящи гортани. Любой дефект в развитии жаберных щелей приводит к необратимым нарушениям и гибели зародыша человека (рис. 5). Так что можно сказать, что без них и человек не был бы человеком.

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 5. Преобразование жаберных дуг зародыша человека; цифрами обозначены номера жаберных дуг ([3], с изм.)

Все изложенное показывает, как много элементов строения тела высших позвоночных, включая человека, происходит от жаберных щелей. Между тем само их происхождение остается неразгаданной тайной эволюционной морфологии животных. В самом деле, как можно представить себе происхождение многочисленных дырок, связывающих кишку с внешней средой? По какой причине могли возникнуть такие дырки? Какие органы могли дать начало жаберным щелям? Какова их первичная функция? На эти вопросы не только нет ответа, но они, по существу, даже не ставятся — по-видимому, мы слишком привыкли к тому, что жаберные щели существуют как характерный признак типа хордовых, и нечего об этом спрашивать. Чтобы попытаться ответить на вопрос о происхождении жаберных щелей, придется выйти за пределы типа хордовых.

Жаберные щели вторичноротых животных

Хордовые входят в состав вторичноротых животных — одной из главных филогенетических ветвей билатерально симметричных животных, которая очень рано обособилась от общего корня билатерий [4]. Два других типа в составе вторичноротых — полухордовые и иглокожие. Согласно современным представлениям, основанным на данных молекулярной филогенетики, иглокожие и полухордовые — это родственные типы, образующие кладу Ambulacralia. Заметим, что впервые на филогенетическую близость иглокожих и полухордовых указал выдающийся российский биолог И. И. Мечников [5], который и ввел в научный обиход название Ambulacralia.

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 6. Ископаемое иглокожее Cothurnocystis elizae (Calcichordata) [6]. Стрелками показаны метамерные жаберные щели

Иглокожие широко распространены в морях и океанах планеты. Это морские звезды, морские ежи, офиуры-змеехвостки, голотурии и морские лилии. Ни у кого из современных иглокожих жаберных щелей нет. Однако, у этих животных есть известковый скелет, был он и у их предков, поэтому палеонтологическая история иглокожих хорошо известна. Оказывается, самые древние кембрийские иглокожие, выделяемые в подтип Calcichordata, или Carpozoa, обладали серией отверстий [6], которые рассматриваются как гомологи жаберных щелей позвоночных (рис. 6).

Полухордовые — тоже морские животные. В состав этого типа входят две группы, очень непохожие друг на друга, — кишечнодышащие и крыложаберные. Кишечнодышащие — довольно крупные морские черви, обитающие в толще грунта. На пляжах Бразилии в приливно-отливной полосе обитает Balanoglossus gigas, который достигает в длину 2 м. Исследования последних лет показали, что на больших глубинах (более 2 км) Мирового океана скрывается богатая и разнообразная фауна кишечнодышащих [7, 8]. Тело взрослых особей подразделяется на три отдела: мускулистый хобот, воротник, где располагается рот, и длинное туловище, в передней части которого открываются многочисленные (до 200 пар) метамерные жаберные щели (рис. 7). Крыложаберные — это мелкие колониальные организмы. На воротниковом отделе они несут щупальца, с помощью которых собирают пищу — мелкую органическую взвесь. Крыложаберные тоже имеют жаберные щели, но их немного — одна или две пары (см. рис. 7).

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 7. Строение кишечнодышащих (слева) и крыложаберных животных

Таким образом, жаберные щели есть у животных всех трех типов, входящих в состав вторичноротых (рис. 8). Это означает, что, скорее всего, жаберные щели были унаследованы от общего предка вторичноротых животных. Биологи называют такие унаследованные от общего предка признаки синапоморфиями. Мы можем с полным основанием утверждать, что жаберные щели — это важнейшая синапоморфия вторичноротых животных.

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 8. Три типа вторичноротых животных. В каждом типе есть представители с многочисленными жаберными щелями

Происхождение жаберных щелей

Чтобы попытаться понять происхождение жаберных щелей, надо разобраться в том, как они устроены у низших вторичноротых животных, а именно у полухордовых. Рассмотрим организацию жаберного аппарата на примере типичных кишечнодышащих. В передней части туловищного отдела кишечник с двух сторон пронизан жаберными щелями, которые имеют подковообразную форму. Они открываются не прямо во внешнюю среду, а в жаберные мешки, которые представляют собой выросты кишечника. А уже жаберные мешки соединяются с внешней средой метамерными порами, располагающимися по бокам туловища (рис. 9).

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 9. Устройство жаберного аппарата кишечнодышащих (по [9], с изм.). Второй жаберный мешок частично вскрыт, и видна жаберная щель кишечника

Первая пара жаберных мешков имеет особое строение. В них открывается первая пара жаберных щелей, и одновременно в них же открываются выделительные органы (нефридии), выводящие продукты обмена из воротникового отдела. Таким образом, первая пара жаберных мешков выполняет двойную функцию — дыхательную и выделительную. Такое слияние нефридиев и первых жаберных щелей у кишечнодышащих позволило нам предложить гипотезу происхождения метамерных жаберных щелей от метамерных выделительных органов, первоначально располагавшихся в каждом сегменте тела предков вторичноротых [10].

Как возникли жаберные щели? Наука, Палеонтология, Эволюция, Жабры, Животные, Зоология, Копипаста, Elementy ru, Длиннопост

Рис. 10. Гипотеза происхождения жаберных щелей в результате слияния метамерных выделительных органов с метамерными карманами кишечника. Пояснения в тексте

Согласно нашей гипотезе, у предков вторичноротых каналы выделительных органов соединились с кишечными карманами (рис. 10, б). В результате в каждом сегменте сформировалась пара сложных органов, в состав которых вошли карманы кишечника и выделительные органы. Каждый такой орган имел три отверстия: воронку выделительного органа, щель, ведущую в кишечник, и отверстие во внешнюю среду (рис. 10, б). Такое соединение оказывается выгодным для животных, ведущих роющий образ жизни (как современные кишечнодышащие) или обитающих в трубках (как современные крыложаберные). Когда животное закапывается в толщу осадка, продукты обмена выводятся через кишечник, а когда высовывается из грунта — через наружные отверстия в воду.


Заметим, что у большинства роющих животных происходит редукция перегородок между сегментами. Причины этого кроются в том, что роющие червеобразные беспозвоночные, как правило, используют для передвижения в толще грунта гидравлический способ локомоции, при этом полостная жидкость перекачивается вдоль оси животного. Перегородки между сегментами препятствуют этому и потому редуцируются, нередко вместе с поддерживаемыми ими нефридиями.


У современных кишечнодышащих только первая пара жаберных щелей соответствует по своей организации тому сложному органу, который имелся у предков вторичноротых во всех сегментах (рис. 9, 10, в). Здесь имеется все, что нужно: воронки выделительных органов, открывающиеся в предыдущий сегмент (воротниковый отдел), дивертикул кишечника (первый жаберный мешок) и отверстие во внешнюю среду. Кишечные дивертикулы последующих сегментов утратили воронки выделительных органов, сохранив только два отверстия — в кишечник и во внешнюю среду (рис. 10, в).


Появление отверстий, которые соединяют дивертикулы кишечника с внешней средой, позволило гипотетическим сложным органам осуществлять две функции — и выделительную, и дыхательную. Это вполне очевидно для первой пары жаберных мешков современных кишечнодышащих. Однако, как оказалось, у этих животных стенки других жаберных мешков тоже сохраняют выделительную функцию. Со стороны целома они окружены специализированными выделительными клетками — подоцитами, которые обеспечивают ультрафильтрацию из целома в полость жаберных мешков [11].


Наша гипотеза позволяет проследить связь специфических органов вторичноротых животных — жаберных щелей — с метамерными органами, имеющимися у других билатерально симметричных животных, а именно с метамерными целомодуктами и метамерными дивертикулами кишечника. Гипотеза объясняет энтодермальную природу жаберных мешков и у полухордовых, и у низших хордовых вплоть до современных бесчелюстных — миног. Вряд ли можно считать случайным и то, что жаберные мешки и жаберные щели сохраняют выделительную функцию — и не только у полухордовых, но и у позвоночных животных. Хорошо известно, что жаберные мешки миног и жабры рыб выполняют не только дыхательную, но и экскреторную функцию [12].


В заключение мы считаем нужным отметить, что предлагаемая гипотеза, как бы авторам этого ни хотелось, не является абсолютно новой. Очень близкие взгляды высказывал еще в 1875 г. выдающийся немецкий биолог, основатель всемирно известной Неаполитанской зоологической станции, Антон Дорн. Он предполагал, что у метамерного предка хордовых животных произошло слияние метамерных нефридиев и метамерных выростов кишечника, которые соединились с внешней средой и дали начало жаберным щелям: «Если мы теперь представим себе, что в различных точках внутренние отверстия сегментальных органов сольются со стенкой кишечника, то установится постулированная нами связь кишечника с внешней средой, помимо ротового и заднепроходного отверстия. <...> Мы уже предположили выше, что между сегментальными органами и кишкой установилась связь, — возможно, что связь эта была вызвана или по крайней мере поддержана образованием выростов кишечника» [13]. Современники не обратили внимания на интересную гипотезу Дорна, вероятно, потому, что ее автор высказал эту идею, так сказать, походя, при обсуждении других вопросов, и не снабдил ее иллюстрациями. Гипотеза Дорна была полностью забыта почти на полтора столетия. Но «время — честный человек», как сказал Пьер Огюстен Бомарше в своей бессмертной «Женитьбе Фигаро», и время, как мы видим, подарило гипотезе Дорна вторую жизнь в XXI в.


Работа выполнена при поддержке Российского научного фонда. Проект 14-50-00034.

Об авторах

Владимир Васильевич Малахов («Природа» №7, 2016)

Владимир Васильевич Малахов — член-корреспондент РАН, заведующий кафедрой зоологии беспозвоночных биологического факультета МГУ им. М. В. Ломоносова, руководитель лаборатории биологии морских беспозвоночных Дальневосточного федерального университета (Владивосток). Область научных интересов — сравнительная анатомия, эмбриология и филогения беспозвоночных.


Ольга Владимировна Ежова («Природа» №7, 2016)

Ольга Владимировна Ежова — кандидат биологических наук, доцент той же кафедры, сотрудник той же лаборатории. Специалист в области морфологии и тонкой организации кишечнодышащих, морских звезд, офиур и голотурий; занимается изучением эволюции амбулакралий, морфологии, микроскопической анатомии и ультраструктуры полухордовых, иглокожих и хордовых.

Литература

1. Северцов А. Н. Морфологические закономерности эволюции. М.; Л., 1939.

2. Шмальгаузен И. И. Основы сравнительной анатомии позвоночных животных. М., 1947.

3. Shubin N. Your Inner Fish: A Journey into the 3,5-Billion-Year History of the Human Body. Pantheon. 2008. [Шубин Н. Внутренняя рыба. История человеческого тела с древнейших времен до наших дней / Пер. с англ. П. Петрова. М., 2010.]

4. Малахов В. В. Революция в зоологии: новая система билатерий // Природа. 2009. № 3. С. 40–54.

5. Metschnikoff E. E. Über die Systematische Stellung von Balanoglossus // Zool. Anziger. 1869. Bd. 4. S. 139–143, 153–157.

6. Jefferies R. P. S., Brown N. A., Daley P. E. J. The Early Phylogeny of Chordates and Echinoderms and the Origin of Chordate Left-Right Asymmetry and Bilateral Symmetry // Acta Zool. (Stockh.). 1996. V. 77. № 2. Р. 101–122.

7. Holland N. D., Clague D. A., Gordon D. P. et al. ‘Lophenteropneust’ hypothesis refuted by collection and photos of new deep-sea hemichordates // Nature. 2005. V. 434. P. 374–376. DOI: 10.1038/nature03382.

8. Priede I. G., Osborn K. J., Gebruk A. V. et al. Observations on torquaratorid acorn worms (Hemichordata, Enteropneusta) from the North Atlantic with descriptions of a new genus and three new species // Invertebrate Biology. 2012. V. 131. № 3. Р. 244–257. DOI: 10.1111/j.1744-7410.2012.00266.x.

9. Balser E. J., Ruppert E. E. Structure, ultrastrusture, and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord // Acta Zool. (Stockh.). 1990. V. 71. P. 235–249.

10. Ezhova O. V., Malakhov V. V. The nephridial hypothesis of the gill slit origin // J. Exp. Zool: (Mol. Dev. Evol.). 2015. V. 324B. Р. 647–652. DOI: 10.1002/jez.b.22645.

11. Pardos F., Benito J. Fine structure of the branchial sacs of Glossobalanus minutus (Enteropneusta) with special reference to podocytes // Arch. Biol. 1988. № 99. Р. 351–363.

12. Наумов Н. П., Карташев Н. Н. Зоология позвоночных. Часть 1: Низшие хордовые, бесчелюстные, рыбы, земноводные. М., 1979.

13. Dohrn A. Der ursprung der wirbelthiere und das princip des functionswechsels. Genealogische skizzen. 1875. Leipzig: Verlag von Wilhelm Engelmann. Р. 10–17. [Дорн А. Происхождение позвоночных животных и принцип смены функции / Пер с нем. Б. И. Балинского. М.; Л., 1937. С. 104–105, 112.]

Показать полностью 10
102

Палеонтологи уточнили время появления первых членистоногих Часть вторая

Палеонтологи уточнили время появления первых членистоногих Часть вторая Палеонтология, Наука, Эволюция, Членистоногие, Копипаста, Elementy ru, Длиннопост

Первая часть

Эволюционный процесс, охвативший «стволовых эуартропод», хорошо описывается введенным Александром Георгиевичем Пономаренко термином «артроподизация» (А. Г. Пономаренко, 2004. Артроподизация и ее экологические последствия). Это означает, что признаки членистоногих возникали параллельно во многих (хотя и родственных) эволюционных ветвях, подчиняясь, с одной стороны, общей наследственности, а с другой — общим требованиям окружающей среды. При этом одни и те же адаптации зачастую реализовались в разных эволюционных линиях, во-первых, в разной последовательности, а во-вторых — слегка различными способами. Именно это и дает возможность отличить постепенную параллельную эволюцию от гипотетического явления нового типа сразу «во всеоружии», — подобно Афине, которая вышла в полном вооружении из головы Зевса.


Например, некоторые исследователи считают, что как минимум в двух разных ветвях «стволовых эуартропод» членистые хватательные околоротовые придатки, функционально сходные между собой, на самом деле принадлежат к разным сегментам головы — а значит, развились независимо и никак не могут быть гомологами друг друга (D. A. Legg, J. Vannier, 2013. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods). Это очень правдоподобно: именно так и должен был бы выглядеть процесс артроподизации, если исходить из теоретических представлений, подтвержденных данными по другим группам организмов, которые претерпели аналогичную эволюцию (классический пример такой группы — зверообразные, предки млекопитающих).

«Кроновые эуартроподы»

Для полноты картины следует добавить, что эуартроподы в классическом «рэй-ланкастеровском» смысле более или менее соответствуют современному понятию «кроновая группа эуартропод», или просто «кроновые эуартроподы» (crown-Euarthropoda). Кроновой группой (crown group) в современной систематике называется часть эволюционного древа, охватывающая ближайшего общего предка всех доживших до наших дней членов данной группы вместе со всеми его потомками (неважно, ныне живущими или вымершими; см. Древнейшие предки кольчатых червей могли быть похожи на брахиопод, «Элементы», 26.02.2016). А стволовой группой (stem group) называется та часть древа, ветви которой до современности не дотягиваются (см. рис. 2).

Палеонтологи уточнили время появления первых членистоногих Часть вторая Палеонтология, Наука, Эволюция, Членистоногие, Копипаста, Elementy ru, Длиннопост

Рис. 2. Упрощенное эволюционное древо членистоногих и их родственников. Тихоходки, положение которых до сих пор остается спорным и которые в любом случае представляют собой крайне специализированную боковую ветвь, сюда не включены. Оранжевая стрелка указывает на представителя «стволовых эуартропод». У него можно видеть плавательные выросты на туловище, фасеточные глаза и длинные, мощные членистые околоротовые придатки (об этих признаках см. ниже в тексте)

Есть одна группа членистоногих, которую мы еще ни разу не упомянули. Это трилобитообразные (Trilobitomorpha). Трилобиты — широко известные палеозойские животные, в целом похожие внешне на мокриц, но обладавшие огромным разнообразием как облика, так и образа жизни (см. Р. Форти, 2014. Трилобиты. Свидетели эволюции). У них есть четкое деление тела на тагмы, а также настоящие антенны и двуветвистые членистые конечности. Все это — эуартроподные признаки. Современные биологи склонны относить трилобитов к кроновой группе эуартропод, несмотря на то, что они полностью вымерли. Правда, к кому они ближе внутри кроновой группы — к хелицеровым или к жвалоносным, — пока непонятно. Молекулярные методы, которые могли бы однозначно решить этот вопрос, в данном случае неприменимы: ведь последние трилобиты исчезли в пермском периоде, и никакой ДНК от них не осталось.

Палеонтологи уточнили время появления первых членистоногих Часть вторая Палеонтология, Наука, Эволюция, Членистоногие, Копипаста, Elementy ru, Длиннопост

Первые членистоногие

Теперь мы узнали вполне достаточно, чтобы оценить по достоинству крайне интересный обзор, опубликованный весной 2018 года коллективом из четырех довольно молодых, но уже известных палеонтологов (один соавтор родом из Канады, трое других — из Британии). Все они — специалисты по ископаемым членистоногим, их родственникам и их происхождению. Главный вопрос, который интересовал авторов: что могут нам сообщить эуартроподы (как «кроновые», так и «стволовые»), если рассматривать их в качестве свидетелей кембрийского взрыва?


Чтобы вникнуть в суть дела, нам понадобится немного цифр. По наиболее свежим датировкам, кембрийский период начался 541 миллион лет назад. Остатки членистоногих появляются в кембрийских отложениях отнюдь не сразу. Первые найденные в ископаемом состоянии эуартроподы «кроновой группы» — это трилобиты, самые ранние остатки которых имеют возраст 521 миллион лет. Причем обнаруживаются они почти одновременно в нескольких точках Земли: едва появившись, трилобиты быстро приобрели глобальное распространение (очевидно, не в последнюю очередь потому, что в жизненном цикле у них были планктонные личинки, которых могут свободно переносить морские течения). Что касается «стволовых эуартропод», то самый древний их представитель — существо, относящееся к группе аномалокаридид, от которого найден характерный околоротовой придаток (A. C. Daley, D. A. Legg, 2015. A morphological and taxonomic appraisal of the oldest anomalocaridid from the Lower Cambrian of Poland). Возраст этой находки пока определен лишь приближенно: 519–520 миллионов лет. Чуть позже, 518 миллионов лет назад, на сцену выходит так называемая Чэнцзянская биота, где «стволовые эуартроподы» представлены во всем великолепии. И наконец, 514 миллионов лет назад в летописи появляются микроскопические остатки первых ракообразных. Еще через несколько миллионов лет ракообразных становится много — фауна приближается к современной, кембрийский взрыв остается позади.

Палеонтологи уточнили время появления первых членистоногих Часть вторая Палеонтология, Наука, Эволюция, Членистоногие, Копипаста, Elementy ru, Длиннопост

Peytoia infercambriensis Составная окаменелость из нижнего кембрия Завишинская формация Польши, показывающая гребень Peytoia infercambriensis. ноябрю с членистоногим неопределенной близости. Фотографии всего экземпляра (а) части и (б). Стрелка в (b) указывает знаки подготовки, ограничивающие аномалокаридидный придаток от тела членистоногих, которые находятся на несколько разных уровнях в скале. (c-e) Крупный план гребенки Peytoia infercambriensis. ноябрю Holotype образец PIG 1432 II 22. (c) Фотография части. (d) Композитный чертеж как с частичной, так и с обратной стороны. (e) Фотография партнера, зеркально отраженная для согласованной ориентации. Все снимки сделаны под кросс-поляризованным верхним освещением с образцом, погруженным в воду. Сокращения: ds - дорзальные иглы; org - неопознанный органический материал; p1-p9 - подомеры с 1 по 9; r - поднятые овальные выступы; 

Что дают нам все эти даты? Прежде всего, налицо парадоксальный факт: «стволовые эуартроподы» появляются в палеонтологической летописи позже, чем «кроновые». Грубо говоря, предки появляются в летописи позже потомков (пусть и совсем ненамного позже). Что это значит? Никто, конечно, не сомневается, что «кроновые эуартроподы» произошли от кого-то из «стволовых». Но не менее несомненно и то, что какое-то время эти группы существовали вместе. Скорее всего, дело в том, что «стволовые эуартроподы» в принципе хуже представлены в летописи: их кутикула была существенно менее твердой, чем у трилобитов и ракообразных, а потому их тела (или части тел) с меньшей вероятностью сохранялись в донных осадках. Тут стоит вспомнить, что у онихофор, которых не зря называют «бархатными червями», кутикула до сих пор мягкая, бархатистая, растягивающаяся, — совсем не такая, как у ракообразных или насекомых.


Есть, правда, и другая возможность. Что, если трилобиты — это не «кроновые эуартроподы», а одна из групп «стволовых», вышедшая на «истинно эуартроподный» эволюционный уровень совершенно самостоятельно? Это теоретически не исключено, но нуждается в серьезных доказательствах, которых пока нет.


Как видим, в первые двадцать миллионов лет кембрия ни «стволовые», ни «кроновые эуартроподы» не обнаруживаются (во всяком случае, пока — не стоит забывать, что палеонтология продолжает стремительно развиваться и новые находки могут возникнуть в любой момент). Значит ли это, что они появляются в летописи внезапно? Нет. Как обычно и бывает в таких случаях, находкам захороненных тел (или отпечатков тел) предшествуют находки ископаемых следов, предположительно оставленных теми же организмами. Это тоже достойный предмет изучения. Существует целая наука об ископаемых следах — палеоихнология. Итак, в отложениях начала кембрия присутствуют довольно многочисленные ископаемые следовые дорожки, часть из которых, видимо, принадлежит «стволовым эуартроподам», а часть «кроновым». Возраст древнейших из них — примерно 537 миллионов лет.

Ну, а что было еще раньше? Весь отрезок истории Земли, предшествующий началу кембрийского периода, принято называть докембрием. Непосредственно с кембрием снизу — со стороны более древних времен — граничит эдиакарский период, относящийся к протерозойской эре. Живая природа эдиакария уникальна. Она резко отличается от живой природы кембрия. Следы членистоногих — «стволовых», «кроновых» и вообще каких бы то ни было — в эдиакарии, по словам некоторых авторов, «поразительным образом отсутствуют» (M. G. Mangano, L. A. Buatois, 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks). Впрочем, это не так уж и поразительно, если исходить из вполне вероятной гипотезы, что членистоногих тогда просто не было.


Загадочная сприггина

Палеонтологи уточнили время появления первых членистоногих Часть вторая Палеонтология, Наука, Эволюция, Членистоногие, Копипаста, Elementy ru, Длиннопост

Однако голым отрицанием тут не отделаешься. Существует такая вещь, как тафономия — наука о закономерностях захоронения ископаемых остатков, которой дал название великий Иван Антонович Ефремов. Каждый палеонтолог прекрасно знает, что отсутствие той или иной группы организмов в палеонтологической летописи может объясняться эволюционными причинами (эта группа либо еще не возникла, либо уже вымерла), а может и тафономическими (эта группа существовала, но жила в таких условиях, где захоронение остатков ее представителей было крайне маловероятно). Выбор между этими вариантами часто приводит к серьезным дискуссиям. Здесь перед нами именно такой случай. Что, если отсутствие в летописи докембрийских членистоногих — это на самом-то деле тафономический артефакт? Такое возможно, если условия захоронения в эдиакарии были принципиально иными, чем в кембрии.


Понимая эту возможность, авторы обзора дотошно проанализировали данные о том, насколько эдиакарские местонахождения древних организмов (а их известно не так уж мало) отличаются от кембрийских. Был сделан вывод, что наиболее важные с точки зрения нашей проблемы типы сохранности являются для эдиакария и кембрия фактически общими. Речь идет не только о классических лагерштеттах «типа Бёрджесс», но и о захоронениях фосфатизированных микрофоссилий «типа Эрстен» (Orsten-type), которые тоже дают очень интересные находки. Эти типы местонахождений отнюдь не ограничиваются кембрием: в эдиакарии они тоже распространены, и в них отлично сохраняются тогдашние организмы, причем весьма разнообразные. Иное дело, что сплошь и рядом такие находки бывает сложно интерпретировать: увы, эдиакарские живые существа слишком необычны по современным меркам, и поминавшийся нами принцип актуализма начинает тут давать сбои (см., например: Ископаемые эмбрионы из Доушаньтуо, вероятно, не эмбрионы, «Элементы», 09.01.2012). Но уж если бы там были членистоногие — то они сохранились бы наверняка, по крайней мере, хоть в каком-нибудь количестве.


Более того, можно утверждать, что по совокупности геохимических факторов, влиявших на захоронение ископаемых, кембрий был ближе к эдиакарию, чем к более поздним эпохам. Именно к концу кембрия условия в морях сильно изменились — в первую очередь из-за деятельности животных, которые связывали растворенные соли в материале своих раковин, меняя химический состав морской воды, а заодно активно фильтровали эту воду, делая ее более прозрачной и тем самым улучшая условия для водорослей, насыщающих океан кислородом. Кроме того, животные вовсю рыли норы в морском дне, перемешивая грунт и в результате обогащая кислородом его тоже. Все это, вместе взятое, сокращало возможности для образования стабильных бескислородных минерализованных осадков — а как раз из таких осадков и получаются лагерштетты. Неудивительно, что после кембрия их стало гораздо меньше.


Итак, объяснить отсутствие докембрийских членистоногих чисто тафономическими причинами невозможно. Правда, известно несколько эдиакарских ископаемых, которых разные авторы объявляли членистоногими (или членами вымерших типов, близких к ним). Но эта гипотеза ни в одном случае не подтверждена сколько-нибудь надежно.


Типичным примером такого ископаемого можно назвать сприггину (Spriggina) — эдиакарское существо с вытянутым сегментированным телом и неким подобием головного щита. Ее не раз описывали то как кольчатого червя, то как членистоногое (см., например: M. McMenamin, 2003. Spriggina is a trilobitoid ecdysozoan). Однако, во-первых, у сприггины не найдено никаких усиков, ножек, челюстей и вообще конечностей. А во-вторых, обычную для животных двустороннюю симметрию у нее заменяет симметрия скользящего отражения, когда правая и левая стороны тела сдвинуты относительно друг друга примерно на половину сегмента. Уже одно это означает, что если сприггина и была многоклеточным животным, то от плана строения членистоногих ее план строения отличался радикально. Принадлежать к этому типу она никак не могла. Примерно так же обстоит дело и со всеми остальными эдиакарскими находками.


История со сприггиной хорошо показывает, насколько усложняется работа палеонтологов при погружении в древнейшие времена, где уже не действуют сравнения с современной флорой и фауной. Ее предполагаемая более поздняя родственница — метасприггина (Metaspriggina) — в итоге вообще оказалась хордовым животным (P. Janvier, 2015. Facts and fancies about early fossil chordates and vertebrates). Ну, а сама сприггина пока что так и остается загадкой.

Ошибка великого Лайеля

Итак, сумма данных по древним членистоногим на сегодняшний день дает следующую непротиворечивую картину: общий план строения членистоногих (и шире — панартропод) сложился примерно на рубеже эдиакария и кембрия. Успех этого плана строения привел к адаптивной радиации — довольно быстрому разделению группы на множество самостоятельно эволюционирующих ветвей, в которых начался процесс артроподизации. Примерно через 20 миллионов лет этот процесс завершился появлением «истинно эуартроподной» модели, обладатели которой — они же «кроновые эуартроподы» — с тех пор и господствуют в биоте Земли.


Противостоящая этой точке зрения гипотеза «долгой скрытой докембрийской эволюции» была основана в первую очередь на методе молекулярных часов (см. Диверсификация животных началась задолго до кембрийского взрыва, «Элементы», 13.12.2011). Сравнительный подсчет аминокислотных и нуклеотидных замен раз за разом приводил исследователей к выводу, что расхождение главных эволюционных стволов животных случилось задолго до кембрийского взрыва — в глубоком докембрии. Согласно одной из первых таких работ, отделение членистоногих от других животных должно было произойти 1200 миллионов лет назад (A. G. Wray et al., 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla). Сейчас ясно, что подобные оценки совершенно нереальны. Большое количество нуклеотидных замен, отличающих эволюционные ветви друг от друга, может быть связано не только с древностью расхождения этих ветвей, но и со скоростью их эволюции после расхождения. Чем выше эта скорость, тем больше замен могло накопиться за тот же промежуток времени. Поэтому молекулярные часы обязательно нужно калибровать по палеонтологическим данным, как это и делается в современных работах (см. Членистоногие подтверждают реальность кембрийского взрыва, «Элементы», 17.11.2013). Одна из таких работ, например, датирует расхождение жвалоносных и хелицеровых интервалом 514–536 миллионов лет назад (M. dos Reis et al., 2015. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales). А это уже прекрасно согласуется с непосредственными свидетельствами ископаемых остатков.


Приведем имеющий косвенное отношение к нашей теме факт из истории науки. Величайший геолог XIX века Чарльз Лайель (Sir Charles Lyell), с именем которого принято связывать многократно здесь упоминавшийся принцип актуализма, объяснял отсутствие остатков млекопитающих в палеозойских породах, как бы мы сейчас сказали, тафономическими причинами: мол, млекопитающие живут на суше, а захоронение костей происходит в первую очередь в морских осадках, вот они и не дошли до нас с тех пор (A. Hallam, 1998. Lyell’s views on organic progression, evolution and extinction). Лайель, безусловно, был великим ученым, но в данном случае он ошибся. Сейчас мы точно знаем, что никаких млекопитающих в палеозое не существовало: они появились на целую геологическую эру позже. Лайелю, научное мировоззрение которого было основано на убеждении в глубоком постоянстве факторов и процессов, действовавших на поверхности Земли в течение всей ее истории, было слишком трудно представить себе возникновение на этой планете чего-то совершенно нового — например, нового класса животных. Можно сказать, что это была своеобразная разновидность экономии мышления.


Дискуссия вокруг гипотезы «долгой скрытой докембрийской эволюции» невольно вызывает в памяти эту ошибку великого Лайеля. Впрочем, тут есть оговорки. Во-первых, возникновение самых крупных эволюционных стволов животных вполне может датироваться докембрием, пусть и неглубоким. Во-вторых — и это самое главное — возникший конфликт между гипотезами стопроцентно разрешим. Для этого нужны всего лишь факты. Палеонтология докембрия сейчас развивается быстро. Даже одной-единственной надежно подтвержденной находки докембрийского членистоногого будет достаточно, чтобы противники гипотезы «долгой скрытой докембрийской эволюции» сразу изменили свои взгляды. Посмотрим, произойдет ли это.


Источник: Allison C. Daley, Jonathan B. Antcliffe, Harriet B. Drage, and Stephen Pates. Early fossil record of Euarthropoda and the Cambrian Explosion // Proceedings of the National Academy of Sciences. 2018. V. 115. № 21. P. 5323–5331. DOI: 10.1073/pnas.1719962115.


Сергей Ястребов
http://elementy.ru/novosti_nauki/433315/Paleontologi_utochni...

Показать полностью 5
112

Палеонтологи уточнили время появления первых членистоногих Часть первая.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Международная группа палеонтологов выпустила свежий обзор данных, касающихся появления в палеонтологической летописи первых представителей самого крупного типа животных — членистоногих. Сразу несколько дисциплин, включая молекулярную филогенетику и тафономию (науку о закономерностях захоронения ископаемых остатков), приводят к выводу, что реальным временем возникновения членистоногих был рубеж эдиакарского и кембрийского периодов, когда произошел так называемый «кембрийский взрыв». Авторы обзора отвергают конкурирующую гипотезу «долгой скрытой докембрийской эволюции», согласно которой главные ветви животных, в том числе и членистоногих, возникли гораздо раньше.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 1. Эволюционное древо панартропод, сопровожденное изображениями некоторых членов этой группы. Подробные объяснения — в тексте. Детальная структура приведенного древа в данном случае неважна, это просто одна из версий. Среди изображенных животных — два современных (тихоходка и мечехвост) и три ископаемых, из которых галлюцигения (Hallucigenia) близка к онихофорам, а керигмахела (Kerygmachela), аномалокарис (Anomalocaris) и диания (Diania) относятся к обсуждаемым ниже «стволовым эуартроподам». Стоит упомянуть, что керигмахела получила видовое название в честь великого датского философа Сёрена Кьеркегора — Kerygmachela kierkegaardi. Иллюстрация из статьи D. A Legg et al., 2013. Lobopodian phylogeny reanalised, с изменениями



Хозяева Земли

Говорят, что знаменитый английский биолог Джон Холдейн (John Burdon Sanderson Haldane) однажды оказался в компании богословов, и они задали ему вопрос: какие черты Творца обнаруживаются при изучении природы творения? Холдейн, известный своими материалистическими взглядами, проворчал: «Неумеренная увлеченность жуками» (“An inordinate fondness for beetles”; цитируется по статье: G. E. Hutchinson, 1959. Homage to Santa Rosalia or why are there so many kinds of animals?). Этот шуточный ответ был, однако, основан на биологических фактах. Широко известно, что жуки, или жесткокрылые, — это самый многочисленный отряд во всем животном царстве. Если, например, сравнить жуков и млекопитающих, окажется, что число известных на данный момент видов жуков превосходит число видов млекопитающих в 72 раза. И это несмотря на то, что млекопитающие — не отряд, а класс, т. е. группа значительно более высокого уровня.


Сказанное о жуках можно распространить и на их эволюционных родственников — от близких до дальних. Жуки относятся к насекомым, которые, в свою очередь, входят в тип членистоногих. Разнообразие этого типа поистине грандиозно. По современным подсчетам, больше 80% всех видов многоклеточных животных — это членистоногие. Другой настолько успешной эволюционной ветви просто нет в природе. Замечательная книга Эдварда Уилсона (Edward Osborne Wilson), значительная часть которой рассказывает о возникновении социальных систем у членистоногих, недаром называется «Хозяева Земли».


Неудивительно, что эволюция членистоногих занимает многих исследователей. Дело облегчается тем, что палеонтологическая летопись членистоногих сравнительно богата. Более того, ее «чтение» — работа достаточно благодарная. Согласно принципу актуализма, ключом к пониманию прошлого служит настоящее. В частности, любые выводы, касающиеся ископаемых животных, должны быть в конечном счете обязательно основаны на данных о животных современных — иначе исследователю будет просто не на что опереться. В случае с членистоногими этот принцип работает прекрасно, потому что в распоряжение ученых попадает огромное количество как современных, так и ископаемых форм, очень разнообразных, но в то же время устроенных более-менее по одному плану. Это — идеальная ситуация для палеонтолога, и естественно, что исследователи ископаемых членистоногих пользуются ей сполна (см., например: Палеоэнтомология в России).


Членистоногие — группа организмов, очень подходящая для проверки всевозможных гипотез, касающихся хода эволюции. Например, действительно ли большинство современных крупных групп животных возникло во время кембрийского взрыва, или их внезапное появление в начале кембрийского периода связано с образованием твердых скелетов, а истинные эволюционные «корни» лежат гораздо глубже? Попытки выяснить это, основываясь на материале по членистоногим, уже предпринимались (см. Членистоногие подтверждают реальность кембрийского взрыва, «Элементы», 17.11.2013). Но эволюция членистоногих, особенно ранняя, крайне интересна и сама по себе — как история, героями которой являются многие совершенно необычные с нашей современной точки зрения живые существа. Палеонтология XXI века успела сделать много открытий в этой области. Впрочем, и нерешенных вопросов тут, как всегда, еще хватает.


Усики, жвалы и хелицеры

По современным данным, тип членистоногих состоит из двух крупных эволюционных ветвей.


Одна ветвь — хелицеровые (Chelicerata), куда относятся паукообразные, мечехвосты и морские пауки. У них нет усиков, зато есть хелицеры — околоротовые придатки, оканчивающиеся клешнями, крючками или стилетами. Большинство хелицеровых, во всяком случае крупных, — хищники, потому что для других способов питания их ротовой аппарат подходит мало.


Вторая ветвь членистоногих называется жвалоносными (Mandibulata). В их ротовой аппарат входят челюсти — в том числе мандибулы, которые иначе называются жвалами, — представляющие собой не что иное, как сильно видоизмененные ходильные ноги. Этим жвалы принципиально отличаются от хелицер, которые не имеют с ногами ничего общего. Ротовой аппарат жвалоносных, оснащенный набором челюстей, позволяет осваивать предельно разнообразные способы питания, что мы и видим на примере членов этой группы — многоножек, ракообразных и особенно насекомых. Кроме того, для жвалоносных очень характерны усики, или антенны — одна или две пары. Как уже упоминалось, у хелицеровых усиков нет.


Строго говоря, тип, состоящий из жвалоносных и хелицеровых, называется Euarthropoda (эуартроподы, «настоящие членистоногие»). Это название, более точное, чем просто «членистоногие», предложил в 1904 году знаменитый английский зоолог Рэй Ланкестер (Sir Edwin Ray Lankester). Среди признаков эуартропод — четкое деление тела на отделы (тагмы) и присутствие членистых конечностей, внутри которых есть суставы.


Животные, у которых членистых конечностей нет и никогда не было, не относятся к эуартроподам, даже если по многим другим признакам они к ним близки. Существует две группы таких животных: онихофоры — наземные существа, которых иногда называют «бархатными червями» (velvet worms), — и тихоходки, мельчайшие водяные жители (см., например: Укорочение тела тихоходок связано с потерей Hox-генов, «Элементы», 04.03.2016). И у онихофор, и у тихоходок тело сегментировано почти так же, как у членистоногих, но конечности нечленистые. Поэтому диагнозу типа Euarthropoda, равно как и буквальному значению слова «членистоногие», они не соответствуют.


Тем не менее онихофоры и тихоходки, безусловно, являются близкими родственниками эуартропод. В конце XX века эуартропод, онихофор и тихоходок формально объединили в надтип Panarthropoda (букв. «все членистоногие»). Панартроподы — огромная эволюционная ветвь, которая, в свою очередь, входит в группу линяющих животных (Ecdysozoa; см., например: Китайские палеонтологи нашли древнейшего головохоботного червя, «Элементы», 04.06.2014). Таково положение членистоногих в системе животного мира.


«Стволовые эуартроподы»

До сих пор, говоря о членистоногих и их родственниках, мы упоминали только современные группы. Однако для полного понимания эволюционных событий, сформировавших самый многочисленный тип животного царства, просто необходимо учитывать палеонтологическую летопись, и прежде всего — летопись кембрийского периода, когда сформировались почти все крупные эволюционные ветви животных. В кембрии встречаются интереснейшие живые существа, совершенно не похожие на своих современных родственников (многих из них нельзя отнести ни к какому современному типу — по крайней мере, без явных натяжек). Трудность в том, что «мягкотелые» существа, у которых нет минеральных скелетов или раковин, сохраняются в ископаемом состоянии относительно редко, и к членистоногим это, увы, тоже относится. Для их захоронения нужны лагерштетты — глинистые осадочные породы, образующиеся в малокислородных условиях (там, где кислорода много, в грунт проникают роющие животные, которые сразу нарушают структуру формирующегося осадка; см. А. Ю. Журавлев, 2014. Ранняя история Metazoa — взгляд палеонтолога). Особой известностью в качестве источника кембрийских ископаемых, заключенных в лагерштеттах, пользуются канадские сланцы Бёрджесс (Burgess Shale), где раскопки ведутся уже больше ста лет. Фауна сланцев Бёрджесс настолько знаменита, что местонахождения с подобным типом сохранности обозначаются в научных статьях аббреавиатурой BST — Burgess Shale-type, «тип сланцев Бёрджесс». Палеонтология в наши дни развивается быстро, и местонахождений BST известно много, причем в некоторых из них степень сохранности просто поразительна. Это позволило неплохо изучить древнейших родственников членистоногих и, что называется, пролить свет на их происхождение. Правда, открывшуюся картину никак не назовешь простой. Но тем она интереснее.


Бросим взгляд на эволюционное древо (рис. 2). По молекулярным данным, которые в данном случае неплохо согласуются с палеонтологическими, ближайшие «внешние» родственники эуартропод, дожившие до наших дней — это онихофоры. В палеонтологической летописи онихофоры — или, во всяком случае, близкие к ним формы — тоже присутствуют. Правда, в кембрийском периоде они были еще не наземными, а морскими (см. Aysheaia). Это гусеницеобразные существа, которые передвигались по дну на множестве коротких ножек, оканчивающихся коготками. Вполне вероятно, что общие предки эуартропод и онихофор были на них похожи.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 2. Упрощенное эволюционное древо членистоногих и их родственников. Тихоходки, положение которых до сих пор остается спорным и которые в любом случае представляют собой крайне специализированную боковую ветвь, сюда не включены. Оранжевая стрелка указывает на представителя «стволовых эуартропод». У него можно видеть плавательные выросты на туловище, фасеточные глаза и длинные, мощные членистые околоротовые придатки (об этих признаках см. ниже в тексте)

Однако онихофоры вряд ли являются непосредственными предками эуартропод (во всяком случае, эуартропод в строгом и традиционном смысле этого слова). Вот тут-то и начинается самое интересное. На реальном эволюционном древе между ветвью онихофор и ветвью эуартропод находится целая совокупность весьма оригинальных полностью вымерших ветвей, члены которых обладали отдельными «эуартроподными» признаками, но еще не набрали их полного комплекса, какой мы видим у паука, сороконожки или мухи. Эти ветви можно было бы назвать переходными, но надо помнить, что для своей среды и своего времени каждое относящееся к ним животное было вполне завершенным организмом, отлично вписанным в определенную экологическую нишу (иначе бы оно не попало в палеонтологическую летопись). Хотя, конечно, с нашей современной точки зрения многие члены этих «переходных» ветвей выглядят крайне странно.


В современной научной литературе упомянутую совокупность эволюционных ветвей принято называть «стволовой группой эуартропод», или просто «стволовыми эуартроподами» (stem-Euarthropoda). Честно говоря, такое обозначение может изрядно запутать: ведь в том-то и дело, что животные, на которых оно распространяется, к эуартроподам в узком смысле этого слова не относятся (см. J. Ortega‐Hernandez, 2014. Making sense of ‘lower’and ‘upper’ stem‐group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848). Однако — тут нам поневоле придется употребить предложение, насыщенное терминами — кладистическая систематика, господствующая в современной биологии почти безраздельно, категорически запрещает вводить парафилетические таксоны. Если говорить попросту, это означает, что группа организмов, охватывающая не единственную эволюционную ветвь, а целый эволюционный уровень, не может считаться единицей классификации и иметь собственное научное название (в частности, латинское). Поскольку в данном случае такая группа налицо и как-то называть ее все же надо, исследователи используют временное обозначение, которое было сочтено корректным по формальным соображениям. Мы тоже — куда деваться — будем этим обозначением пользоваться, оставляя его в кавычках и помня, что с точки зрения классической зоологии «стволовые эуартроподы» — это не эуартроподы.


Положение «стволовых эуартропод» на эволюционном древе показано на рис. 2. Если на время оставить в стороне строгую терминологию, можно сказать, что «стволовые эуартроподы» — это эволюционный уровень, охватывающий часть древа выше онихофор и ниже эуартропод в узком смысле. Что же на этом эволюционном уровне происходило?


А происходило там много интересного. «Стволовые эуартроподы» могут поразить чье угодно воображение — настолько необычен и многообразен их облик (см. рис. 1 и 3). Их членистое туловище часто украшали ряды жаброподобных, крылоподобных или лезвиеподобных выростов, способных служить своего рода плавниками. Появлялись хитиновые головные щиты, которые в некоторых группах становились двустворчатыми. Ходильные конечности менялись во всем диапазоне от примитивных «сосочков» (или их отсутствия) до сложно устроенных длинных ног, членистых, а иногда и двуветвистых, как у ракообразных. Невероятным разнообразием отличались околоротовые придатки: членистые или нечленистые, зачаточные или очень мощные, короткие или длинные, хватательные или фильтрующие, иногда ветвящиеся, а иногда с клешнями, крючками, шипами или щупальцами. Наконец, у ряда форм возникли огромные сложные фасеточные глаза, примерно такие же, как у современных насекомых, и иногда сидящие на стебельках. И все эти признаки вступали между собой во множество сочетаний, часто неожиданных для современных зоологов.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 3. Панартроподы из сланцев Бёрджесс. А — близкая к современным онихофорам Aysheaia. B — Opabinia, обладатель плавниковых выростов, фасеточных глаз и членистого хобота, в данном случае подогнутого под туловище. C — Hurdia, от которой сфотографирован только ротовой аппарат с концентрическим расположением хитиновых зубцов (у настоящих членистоногих ничего подобного не бывает). D — Anomalocaris. Хорошо видны длинные членистые околоротовые придатки. E — еще один Anomalocaris. Белые стрелки указывают на сегментарные мышцы, черные — на железистые выросты кишечника. F — Leanchoilia. Околоротовые придатки длинные и разветвленные, эти ветви служат щупами. G — Perspicaris, обладатель двустворчатого головного щита. H, I, J — Helmetia, Sidneyia и Emeraldella, вероятные родственники трилобитов. Длина масштабной линейки 5 мм на A, 10 мм на B–F и H–J и 3 мм на G. Иллюстрация из обсуждаемой статьи в PNAS



Источник: Allison C. Daley, Jonathan B. Antcliffe, Harriet B. Drage, and Stephen Pates. Early fossil record of Euarthropoda and the Cambrian Explosion // Proceedings of the National Academy of Sciences. 2018. V. 115. № 21. P. 5323–5331. DOI: 10.1073/pnas.1719962115.


Сергей Ястребов
http://elementy.ru/novosti_nauki/433315/Paleontologi_utochni...

Показать полностью 4
Отличная работа, все прочитано!