Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam

Топ прошлой недели

  • Oskanov Oskanov 8 постов
  • alekseyJHL alekseyJHL 6 постов
  • XpyMy XpyMy 1 пост
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Новости Пикабу Помощь Кодекс Пикабу Реклама О компании
Команда Пикабу Награды Контакты О проекте Зал славы
Промокоды Скидки Работа Курсы Блоги
Купоны Biggeek Купоны AliExpress Купоны М.Видео Купоны YandexTravel Купоны Lamoda
Мобильное приложение

Сорбенты

19 постов сначала свежее
PNIPU
PNIPU
9 месяцев назад

Ученые Пермского Политеха изучили возможность очистки промышленных стоков от тяжелых металлов кормовыми дрожжами⁠⁠

Ученые Пермского Политеха изучили возможность очистки промышленных стоков от тяжелых металлов кормовыми дрожжами ПНИПУ, Сорбенты, Металлы, Цинк, Стоки

Загрязнение окружающей среды, в частности, вызываемое тяжелыми металлами в стоках промышленных предприятий, – это серьезная проблема современности. Сегодня разрабатываются различные методы доочистки вод до предельно допустимых концентраций. Большое внимание уделяется возможностям микроорганизмов, биомасса которых обладает универсальными сорбционными свойствами. Особый интерес представляют дрожжи, способные связывать тяжелые металлы в малотоксичные соединения. Биотехнологи Пермского Политеха изучили процесс поглощения ионов цинка дрожжевыми клетками и показали возможность их использования для очистки воды. Исследование позволит создавать выгодные биосорбенты на их основе и тем самым утилизировать отходы микробиологической промышленности.

Статья с подробными результатами опубликована в журнале «Вестник ПНИПУ. Химическая технология и биотехнология», 2024 год. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Цинк попадает в природные воды из-за разрушения и растворения горных пород и минералов, а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и других предприятий.

–  Предельно допустимая концентрация цинка в водных объектах составляет 1 мг/дм3. В настоящее время существуют разные методы очистки воды от тяжелых металлов, но чаще всего необходима доочистка воды до предельно допустимой  концентрации вещества. Дрожжи используют широкий спектр механизмов детоксикации, связывая металлы посредством биосорбции и биоаккумуляции в малотоксичные соединения, – рассказывает студентка кафедры «Химия и биотехнология» ПНИПУ Екатерина Сбитнева.

Ученые Пермского Политеха изучили возможности сухой  биомассы кормовых дрожжей поглощать ионы цинка как из водных растворов, так и из питательной среды. Выявили ряд зависимостей, характеризующих особенности процесса сорбции.

Политехники определили, что основное количество цинка сорбируется из среды уже в первые 20 минут контакта сорбента с раствором. Причем, глубже процесс протекает при более высоком значении кислотности (рН). Степень извлечения цинка после 3 часов инкубирования при рН = 6,5 составила 55%, а при рН = 4,5 – 42%.

Степень поглощения металла заметно растет на каждый дополнительный грамм при увеличении массы навески на 5-10%. Максимальная степень извлечения цинка 55% из раствора объемом 100 мл соответствует 4 граммам сорбента.

– В ходе экспериментов мы установили, что сорбция ионов цинка из растворов сопровождается вымыванием катионов кальция и магния из состава биомассы дрожжей. Это свидетельствует о том, что процесс сорбции с помощью дрожжевых клеток основан на ионном обмене, – поясняет кандидат химических наук, доцент кафедры «Химия и биотехнология» ПНИПУ Лариса Пан.

Проведенные учеными Пермского Политеха исследования показали возможность использования биомассы кормовых дрожжей в качестве сорбентов для извлечения цинка из водных растворов.

Показать полностью
[моё] ПНИПУ Сорбенты Металлы Цинк Стоки
4
0
PNIPU
PNIPU
9 месяцев назад

Ученые Пермского Политеха выяснили, какие водоросли эффективны для создания биосорбента⁠⁠

Ученые Пермского Политеха выяснили, какие водоросли эффективны для создания биосорбента ПНИПУ, Сорбенты, Цезий, Радиоактивность, Металлы, Водоросли, Длиннопост

В настоящее время в мире актуальна проблема экологически безопасного очищения окружающей среды от радионуклидов (радиоактивных веществ) и тяжелых металлов. Опасные токсиканты, находящиеся в почве, воде и воздухе, попадают в организм и негативно влияют на здоровье человека и животных. Способность растений поглощать радиоактивные элементы дает возможность на их основе получать экологически чистые биосорбенты. Ученые Пермского Политеха изучили возможность создания такого сорбента на основе бурых водорослей. Способ перспективен для очистки вод, а также изготовления лекарственных препаратов, позволяющих извлечь тяжелые металлы и радионуклиды из организма человека и животных.

Статья с результатами опубликована в журнале «Вестник ПНИПУ. Химическая технология и биотехнология». Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Среди наиболее опасных для здоровья выделяют металлы-токсиканты — кадмий, медь, мышьяк, никель, ртуть, свинец, цинк, хром и радиоактивные элементы. Радиоцезий — один из самых вредных изотопов, период его полураспада составляет более 30 лет, следовательно, радиоактивное загрязнение после крупных аварий на атомных станциях сохраняется надолго.

Сегодня существуют различные виды неорганических сорбентов для очистки вод от радионуклидов и тяжелых металлов. Но также способность поглощать такие вещества имеют некоторые растения и низшие морские животные, что позволяет использовать их для создания более полезного для окружающей среды очищающего материала.

В настоящее время существуют различные виды неорганических сорбентов для очистки вод от радионуклидов и тяжелых металлов. Также способностью поглощать такие вещества обладают некоторые растения, что позволяет использовать их для создания более эффективного сорбента.

Ученые Пермского Политеха изучили возможность изготовления экологически чистого нетоксичного биосорбента из бурых водорослей, так как они содержат множество активных групп, способных связывать ионы металлов и тем самым очищать среду от радиоактивных элементов.

— Мы исследовали три вида бурых водорослей рода Cystoseira из Черного моря: Cystoseira crinita, Cystoseira erica и Cystosеira barbata. Это многолетние организмы, растущие на каменистых грунтах Черного и Азовского морей на глубине 0,5-20 метров. Изучили химический состав видов и их сорбционную емкость, оценили способность поглощать ионы цезия в статических и динамических условиях, — рассказывает студентка кафедры «Химия и биотехнология» ПНИПУ Екатерина Сбитнева.

Особенность структуры морских водорослей в том, что они содержат поры, размеры которых соотносимы с размерами ионов цезия.

— В ходе эксперимента в ионообменную колонку, заполненную сорбентом, мы пропускали раствор нитрата цезия. На выходе из колонки раствор анализировали на содержание металла. В результате только в случае использования морских водорослей вида Cystosеira barbata происходит максимальное поглощение ионов цезия. Значение адсорбции более чем в 1,5 раза превышает значение адсорбционной емкости вида Cystoseira crinita, — объяснила Екатерина Сбитнева.

— Изучение селективности (избирательности) водорослей по отношению к ионам цезия в растворах необходимо, так как радиоактивные водные растворы с его содержанием имеют сложный состав — в них большое количество ионов натрия и калия. При изучении влияния конкурирующих ионов мы установили, что их наличие препятствует сорбции ионов цезия. При концентрации натрия в растворе выше концентрации цезия в 100 раз, степень его извлечения падает от 1,4 до 3,3 раза на различных типах биосорбента. В присутствии калия показатели падают еще больше, но все же наибольшей селективностью обладает биосорбент на основе водорослей вида Cystosеira barbata, — поясняет кандидат химических наук, доцент кафедры «Химия и биотехнология» ПНИПУ Лариса Пан.

Бурые водоросли содержат активные группы органических соединений, которые поглощают из раствора одно- и двухвалентные металлы. Применять это свойство возможно для сорбентов, используемых при комплексной очистке вод, загрязненных тяжелыми металлами и радионуклидами.

Политехники отмечают, что использование бурых водорослей перспективно, потому что это нетоксичное, недорогое и доступное сырье для получения экологически чистых сорбентов, которые можно применять в качестве лекарственных препаратов для извлечения тяжелых металлов и радионуклидов из организма человека и животных. Исследование ученых ПНИПУ показало, что лучшими свойствами из изученных образцов обладают водоросли Cystosеira barbata. Полученные результаты при измерении объемной емкости позволяют использовать этот вид в будущем для создания усовершенствованных биосорбентов с улучшенными характеристиками.

Показать полностью 1
ПНИПУ Сорбенты Цезий Радиоактивность Металлы Водоросли Длиннопост
3
4
PNIPU
PNIPU
10 месяцев назад

Технология ученых Пермского Политеха открывает новые возможности в изготовлении гранулированных активированных углей⁠⁠

Технология ученых Пермского Политеха открывает новые возможности в изготовлении гранулированных активированных углей ПНИПУ, Активированный уголь, Сорбенты, Пав, Смола, Очищение, Длиннопост

Гранулированный активированный уголь широко применяется в качестве сорбента для борьбы с запахами и удаления загрязнителей из воды и воздуха. Изготавливают его путем смешивания углеродсодержащего материала, например, каменного угля, и связующего, которое позволяет сформировать из пасты гранулы необходимой формы с высокой прочностью. Качество продукта во многом зависит от вязкости связующего и содержания в нем коксового остатка, который накапливается при пиролизе углеродсодержащего материала. Но в настоящее время применяемые компоненты не гарантируют требуемый уровень этих свойств. Для улучшения характеристик связующего ученые ПНИПУ предлагают в его основе использовать коксохимические смолы с различными добавками, снижающими вязкость до нужной степени. Исследование открывает новые возможности в изготовлении гранулированных активированных углей и позволяет получать сорбенты достаточно высокого качества.

Статья опубликована в журнале «Вестник технологического университета», №6, 2024 год. Исследования проведены в рамках общего координационного плана Научного совета РАН по физической химии на 2024 г. (№ 24-03-460-09) и программы стратегического академического лидерства «Приоритет 2030».

Гранулированный активированный уголь (ГАУ) благодаря уникальной структуре пор, может сорбировать молекулы различных размеров и типов. Он способен улавливать и жидкие, и газообразные вещества, тем самым очищая окружающую среду или обрабатывая конкретные объекты, содержащие различные загрязнения.

Характеристики пористой структуры активированного угля в большей степени зависят от углеродной основы. Но связующий компонент влияет на прочность и способность придавать получаемой пасте форму гранул. С этой целью ранее применяли лесохимическую смолу – это жидкий продукт переработки древесины, состоящий из целого спектра разных соединений. Однако ее высокая вязкость затрудняет процессы ее получения и последующего формования. Также из-за низкого содержания коксового остатка в этом виде связующего приходится вводить различные добавки с его более высокой долей.

Часто такой добавкой выступают коксохимические смолы, образующиеся при коксовании (высокотемпературной обработки) каменного угля и представляющие собой черную маслянистую жидкость. Доля коксового остатка при их использовании в ГАУ повышается, но они также имеют значительную вязкость. Поэтому задача улучшения характеристик связующего в производстве гранулированных активированных углей остается нерешенной.

Ученые Пермского Политеха изучили возможность использования коксохимических смол в качестве основного компонента связующего и исследовали, как введение дополнительных добавок в состав влияет на его вязкость и пористую структуру получаемого продукта.

Политехники в лабораторных условиях создали серию образцов ГАУ из пыли каменного угля и коксохимических смол с разной массой коксового остатка (22,51% и 30,77%). Анализ вязкости использованных смол показал, что нагрев связующего до 60°С снижает ее примерно в 5 раз.

– Улучшить характеристики связующего возможно путем введения в его состав добавок поверхностно-активных веществ (ПАВ). В исследовании мы использовали ПАВ разных видов (неионогенные, анионогенные, катионогенные). А еще, как добавку, пробовали применять дистиллированную воду. И во всех случаях определяли зависимость вязкости связующих от количества введенных добавок, – рассказывает кандидат химических наук, доцент кафедры «Химия и биотехнология» ПНИПУ Елена Фарберова.

Результаты показали, что добавление дистиллированной воды в состав связующего приводит к значительному увеличению его вязкости. При исследовании влияния введения ПАВ в каменноугольную смолу оказалось, что наилучший эффект достигается при использовании неионогенного вида. В этом случае вязкость образцов ГАУ при температуре 40°С снижается на 23-55%, при температуре 60°С – на 11-59%.

Политехники отмечают, что использование ПАВ в составе связующего также приводит к увеличению площади удельной поверхности ГАУ на 23%. За счет этого улучшается сорбционная способность продукта, а значит, возрастает эффективность его использования в процессах очистки.

Ученые ПНИПУ доказали, что использование композиционных связующих на основе коксохимических смол для получения гранулированных активированных углей позволит получать сорбенты достаточно высокого качества. Эта перспективная технология дает возможность выйти на новый уровень производства углеродных сорбентов.

Показать полностью
ПНИПУ Активированный уголь Сорбенты Пав Смола Очищение Длиннопост
0
0
PNIPU
PNIPU
10 месяцев назад

Ученые Пермского Политеха разработали биосорбент для очистки вод на основе активированных углей и микроорганизмов⁠⁠

Ученые Пермского Политеха разработали биосорбент для очистки вод на основе активированных углей и микроорганизмов ПНИПУ, Фенол, Сточные Воды, Активированный уголь, Микробы, Сорбенты, Длиннопост

Во многих промышленных районах России поверхностные воды загрязняются органическими соединениями, где фенол – один из самых распространенных. Отравление им приводит к серьезным последствиям и для человека, и для окружающей среды. В сточных водах нефтеперерабатывающих, лесо- и коксохимических предприятий содержание этого вещества может превышать 10 г/л, тогда как предельно допустимая его концентрация в водоемах составляет всего 0,001 мг/л. Существует множество способов удаления фенола, в том числе и применение активированных углей в качестве адсорбента. Чаще всего с их помощью проводят доочистку, удаляя малые концентрации загрязнителя, хотя их потенциал позволяет проводить более глубокую очистку. Ученые Пермского Политеха разработали уникальный биосорбент на основе активированных углей и микроорганизмов. Способ обеспечивает многократное использование сорбента и эффективное очищение сточных вод при больших концентрациях фенола.

Статья с результатами опубликована в сборнике «Химия. Экология. Урбанистика», 2024 год. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Большим источником фенoлoв являются сточные воды процессов термической переработки твердого топлива, например, кoксoхимические предприятия, газовые заводы, газoгенератoрные станции, сланцеперерабатывающие производства, заводы жидкого топлива из угля. В них загрязнители образуются в больших количествах в качестве побочных продуктов. Например, их концентрация в стоках современного кoксoхимическoгo завода может достигать 20 г/л, при этом в сутки завод может сбрасывать в водоемы до 4-10 тонн фенола.

Бактерицидные свойства (убивающие микробы) этого вещества не позволяют напрямую отправлять фенолсодержащие сточные воды на биологические водоочистные сооружения, а превышение предельно допустимых концентраций вызывает у человека отравление, раздражение слизистых оболочек и ожоги кожи.

Существуют разные способы удаления фенола из сточных вод. Основные из них – это ионообменная и биологическая очистка, озонирование и адсорбция (поглощение) активированными углями. Однако последние сейчас применяются только для доочистки воды, содержащей малые концентрации загрязнителя. Хотя активированные угли обладают хорошими адсoрбциoнными свойствами, и с их помощью можно проводить более эффективную утилизацию фенола, чем любыми другими способами. Но после их использования отработанные по фенолу активированные угли не подвергаются регенерации и сжигаются.

– При правильном выборе сорбента можно достичь достаточно глубокой степени очистки, и тогда не придется очищать воды дополнительно. Мы создали биосорбент, представляющий собой активированный уголь, на поверхности которого иммoбилизoванны (закреплены) клетки микроорганизмов, разрушающие загрязнитель. Наша разработка значительно увеличивает эффективность процесса очистки сточных вод с высоким содержанием фенола, – рассказывает кандидат химических наук, доцент кафедры «Химия и биотехнология» ПНИПУ Елена Фарберова.

Активированные угли – это углеродные материалы с высокой степенью пористости. Но из-за небольшой емкости их применение возможно только при очистке вод с низкими концентрациями фенола. Сочетание же с биохимическим методом – использованием микроорганизмов повышает эффективность углеродных сорбентов и позволяет очищать уже высококонцентрированные сточные воды.

В ходе работы политехники выделили специальную культуру микроорганизмов – потенциальных деструктoрoв фенола – из образца активного ила водоочистных сооружений. После ее выращивания готовили раствор культуральной среды, в который погружали пробы активированных углей разных марок. Клетки микроорганизмов сорбировались и закреплялись на пористой поверхности углеродных материалов. Полученные  образцы биосорбента ученые испытывали в процессе очистки воды, содержащей фенол в концентрациях от 0,2 до 6,1 г/дм3, в очищенных пробах определяли остаточную концентрацию фенола. Степень извлечения фенола во всех случаях превышала 95%.

– Полученные результаты по утилизации загрязнителя нашим методом мы сравнивали с результатами при использовании исходного активированного угля. Оказалось, что емкость разработанного биoсoрбента в 2 раза превышает емкость чистого угля. Наибольшую эффективность, как основы биосорбента, показал образец активированного угля  марки АГ-5, которую мы и использовали в дальнейших исследованиях, – поделилась Елена Фарберова.

В большинстве случаев отработанный активированный уголь просто утилизируют, что экономически невыгодно. Разработанный же учеными ПНИПУ биосорбент дает возможность его повторного использования. Политехники предложили технологическую схему непрерывного процесса сoрбции-реактивации, где два одинаковых аппарата, заполненных биосорбентом, по переменно работают как адсорбер очистки воды и реактор его реактивации (восстановления). В таком случае жидкая культуральная среда постоянно циркулирует через слой биoсoрбента, что обеспечивает его многократное применение.

Разработанный метод может быть предложен предприятиям для организации локальной очистки сточных вод с высоким содержанием фенола до концентраций, допустимых для сброса на биологические очистные сооружения.

Показать полностью
[моё] ПНИПУ Фенол Сточные Воды Активированный уголь Микробы Сорбенты Длиннопост
1
2
PNIPU
PNIPU
1 год назад

Быстро устранит разлив нефти: пермские ученые разработали уникальный способ изготовления сорбента⁠⁠

Быстро устранит разлив нефти: пермские ученые разработали уникальный способ изготовления сорбента ПНИПУ, Графит, Нефть, Разлив нефти, Сорбенты, Магний

Микрофотография структуры образца на основе магния и фторида магния

При транспортировке и переработке нефти часто происходят аварии, связанные с разливом топлива. Это наносит большой урон окружающей среде, загрязняя почву и воду. Для устранения последствий разлива используют специальные сорбенты, которые поглощают загрязнитель. Самым эффективным материалом считается терморасширенный графит. Часто предприятия по переработки нефти находятся в труднодоступной местности, поэтому очень сложно быстро изготовить такой сорбент и доставить к месту аварии вовремя. Ученые ПНИПУ совместно с коллегами из ООО «Силур» разработали компактный генератор и специальную смесь для изготовления терморасширенного графита прямо внутри очага чрезвычайной ситуации. Уникальная технология  позволит создавать качественный сорбент для быстрого реагирования при разливе нефтепродуктов.

Статья опубликована в Вестнике Самарского государственного технического университета «Взрывчатые вещества, пороха и твердые ракетные топлива. Синтез, свойства, технология», 2023 год. Исследование проведено при финансовой поддержке Минобрнауки России, проект FSNM-2023-0004.

Есть широкий спектр сорбентов, подходящих для устранения нефти при аварии, но их поглощающая способность очень низкая. Тогда как терморасширенный графит поглощает загрязнитель сильнее, при этом он дешевый, доступный и экологичный. Это высокопористый порошкообразный материал, всего 1 его грамм поглощает до 50-100 граммов нефтепродукта, как на почве, так и на воде.

В России такой материал изготавливается в специальных печах. Производится он из интеркалированного графита, который под действием высокой температуры в десятки раз увеличивается в объеме, образуя червеобразные элементы с низкой теплопроводностью и высокой термической стойкостью. Однако получение терморасширенного графита на предприятиях не позволяет оперативно доставлять его на удаленные места аварий, связанных с разливом нефти.

Именно эту проблему решили ученые Пермского Политеха совместно с коллегами из ООО «Силур». Они предлагают получать такой сорбент непосредственно на месте аварии с помощью разработанного компактного генератора. Для этого важно подобрать подходящий рецепт состава и разработать новую конструкцию для его изготовления.

– Генератор устроен очень просто. Это контейнер с уже подготовленной смесью, который можно компактно доставить к месту аварии. Потребитель просто активирует устройство и уже через мгновение собирает сгенерированный сорбент в отдельный тканевый контейнер. Оттуда его уже выгружают на место разлива, где червеобразные частицы графита впитывают в себя нефть как губка. В дальнейшем собранный нефтепродукт можно отжать. Сейчас мы дорабатываем конструкцию генератора и его состав, после чего разработку можно будет внедрять в производство, – поделился студент кафедры «Технология полимерных материалов и порохов» ПНИПУ Андрей Мякшин.

Генератор содержит графит и нагревательную смесь, которая активирует процесс терморасширения. От этого этапа зависит эффект поглощения нефти. Нагревательная смесь состоит из металлического горючего и окислителя – фторопласта. Такая система дает при горении большую температуру до 3800 К, под действием которой генерируется необходимый материал.

– Мы провели эксперименты с металлами магния, алюминия и бора. Все компоненты перемешивали с графитом и фторопластом и воспламеняли в генераторе. После получения терморасширенного графита мы изучили его свойства и способность поглощать нефть. Самым оптимальным составом оказалась рецептура на основе магния. Она позволяет генерировать материал с хорошими сорбционными свойствами, отличается дешевизной, легкостью поджигания и стабильностью горения, – объясняет научный руководитель проекта, доцент кафедры «Технология полимерных материалов и порохов» ПНИПУ Людмила Хименко.

Так ученые разработали эффективный состав на основе магния, фторопласта и интеркалированного графита в соотношении 1:1:3. Благодаря этому можно легко и быстро изготовить необходимый материал прямо на месте аварии и устранить разлив нефти.

– Мы выяснили, что также можно модифицировать состав, если изначально пропитать графит насыщенным раствором перманганата калия. Распределение и внедрение вещества при этом происходит равномерно, а терморасширенный графит можно получить всего за 2-3 секунды. Такое усовершенствование обеспечивает быстроту и стабильность воспламенения, – рассказывает аспирант кафедры «Технология полимерных материалов и порохов» ПНИПУ Роман Бердников.

Разработанный учеными ПНИПУ совместно с коллегами из ООО «Силур» компактный генератор и состав к нему – это уникальный, удобный и перспективный способ доставки терморасширенного графита к месту аварии. Такая технология позволит быстро и качественно устранять нефтепродукты из зоны загрязнения. Разработка будет полезна для нефтеперерабатывающих предприятий, автосалонов, для сбора токсичных металлов, жидкостей и для военных в СВО.

Показать полностью
[моё] ПНИПУ Графит Нефть Разлив нефти Сорбенты Магний
2
16
Ssainss
Ssainss
2 года назад
Лига Химиков

Сорбент⁠⁠

Здравствуйте уважаемые коллеги.
Может есть кто из прекрасного города Нижний Новгород и может поделиться угольным сорбентом для сорбционных трубок?
Нужно что-то похожее на карбопак б.

[моё] Сорбенты Помощь Текст
1
DELETED
2 года назад

Российские ученые будут использовать борщевик для очистки моря от нефти⁠⁠

Ликвидировать разливы нефти и нефтепродуктов поможет сорбент из борщевика

Российские ученые будут использовать борщевик для очистки моря от нефти Экология, Ученые, Исследования, Наука, Растения, Борщевик, Сорбенты, Длиннопост

сорбент из борщевика Сосновского


Ученые разработали способ получения эффективного сорбента из борщевика Сосновского для устранения разливов нефти и нефтепродуктов и очистки технической воды. Работа выполнена сотрудниками подведомственного Минобрнауки России Российского государственного университета нефти и газа (Национального исследовательского университета) им. И.М. Губкина.

Борщевик — род растений семейства зонтичных, насчитывающий 152 вида, распространенных в умеренном поясе Восточного полушария. Некоторые виды борщевика выращиваются как декоративные растения, другие — на корм скоту, а третьи пригодны в пищу для человека. Часть видов (относящихся к секции Pubescentia Manden) содержит фотосенсибилизирующие вещества (фуранокумарины), вызывающие фитофотодерматит, раковые опухоли и врожденные патологии у людей и животных.

В России и странах СНГ растет около 40 видов борщевика, преимущественно в субальпийском горном поясе. Остро стоит проблема с распространением борщевика Сосновского, вызывающего сильнейшие аллергические буллезные дерматиты, так называемые «ожоги» (вплоть до летальных случаев) в северном, северо-западном и центральном регионах нашей страны.


Российские ученые будут использовать борщевик для очистки моря от нефти Экология, Ученые, Исследования, Наука, Растения, Борщевик, Сорбенты, Длиннопост

исходный борщевик


Ученые Губкинского университета представили способ получения сорбента из этого опасного вида борщевика, который можно применять для ликвидации аварийных разливов нефти и нефтепродуктов на суше и в акватории, а также для очистки технической воды. Время активного впитывания загрязнений сорбентом составляет до 1,5 часов.

Российские ученые будут использовать борщевик для очистки моря от нефти Экология, Ученые, Исследования, Наука, Растения, Борщевик, Сорбенты, Длиннопост

карбонизированный сорбент


«Результаты исследований позволяют сделать вывод, что сорбент при высокой степени плавучести обладает большой сорбционной емкостью. По сравнению с известными органическими аналогами сорбционная емкость сорбента из борщевика Сосновского в среднем больше на 50%», — пояснил заведующий лабораторией кафедры металловедения и неметаллических материалов РГУ нефти и газа (НИУ) им. И.Н. Губкина, кандидат технических наук Юрий Дубинов.

Кроме того, разработка поможет сократить распространение борщевика в России.

Метод запатентован. Номер патента №2772723.

Показать полностью 3
Экология Ученые Исследования Наука Растения Борщевик Сорбенты Длиннопост
12
634
Nuryuz
3 года назад

ВОТ ТАК ДЕЛАЮТ ВЛАЖНЫЕ САЛФЕТКИ "МОРСКОЙ БРИЗ"⁠⁠

С помощью сорбента собирают нефть.

Нефть Сорбенты Пляж Видео Вертикальное видео
52
Посты не найдены
О Нас
О Пикабу
Контакты
Реклама
Сообщить об ошибке
Сообщить о нарушении законодательства
Отзывы и предложения
Новости Пикабу
RSS
Информация
Помощь
Кодекс Пикабу
Награды
Команда Пикабу
Бан-лист
Конфиденциальность
Правила соцсети
О рекомендациях
Наши проекты
Блоги
Работа
Промокоды
Игры
Скидки
Курсы
Зал славы
Mobile
Мобильное приложение
Партнёры
Промокоды Biggeek
Промокоды Маркет Деливери
Промокоды Яндекс Путешествия
Промокоды М.Видео
Промокоды в Ленте Онлайн
Промокоды Тефаль
Промокоды Сбермаркет
Промокоды Спортмастер
Постила
Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии