Команда ученых из 17 стран, в том числе физиков НИУ ВШЭ, провела анализ новых фотометрических и спектроскопических данных самого яркого гамма-всплеска в истории наблюдений — GRB 221009A. Эти данные были получены в Саянской обсерватории всего через час и 15 минут после его регистрации. Исследователи зафиксировали фотоны с энергией 18 тераэлектронвольт. Теоретически подобные высокоэнергетические частицы не должны достигать Земли, однако анализ собранной информации указывает на возможность этого факта. Полученные результаты ставят под сомнение существующие теории поглощения гамма-излучения и могут свидетельствовать о неизвестных физическах процессах.
Исследование было опубликовано в журнале Astronomy & Astrophysics. Гамма-всплески представляют собой одно из самых мощных космических явлений, в ходе которых высвобождается колоссальное количество энергии. Впервые они были зарегистрированы в гамма-диапазоне, что и дало основания для их названия. Эти всплески возникают, когда массивные звезды завершает свой жизненный цикл или сталкиваются нейтронные звезды.
9 октября 2022 года несколько космических гамма-обсерваторий зафиксировали необычайно яркую вспышку в гамма-диапазоне, впоследствии классифицированную как гамма-всплеск GRB 221009A — самый мощный за всю историю наблюдений. Интенсивность этого всплеска была столь высокой, что вызвала сбои в работе гамма-телескопов большинства орбитальных обсерваторий, включая Fermi, INTEGRAL и Конус-Винд. Более того, поток гамма-излучения, обрушившийся на Землю, вызвал значительные возмущения в ионосфере.
Энергия излучения GRB 221009A всего за сто секунд была эквивалентна энергии, излучаемой миллиардом солнц на протяжении 97 миллиардов лет, в то время как возраст Вселенной составляет лишь 13,8 миллиарда лет. События подобного рода происходят крайне редко — примерно раз в тысячу лет. Однако уникальность GRB 221009A заключается не только в его яркости. Его расстояние до нас составляет 2,4 миллиарда световых лет, что относительно близко по космическим меркам. Для сравнения, самый удаленный известный всплеск был зафиксирован на расстоянии около 13,2 миллиарда световых лет. Поэтому это событие вызвало широкий интерес в научном сообществе: уже в 2022 году было опубликовано семь статей, а к настоящему времени — более 200.
Исследователи продолжают детальный анализ данных о GRB 221009A. Международная команда ученых, в которую входят исследователи из НИУ ВШЭ, впервые провела анализ фотометрических и спектроскопических наблюдений, полученных в Саянской обсерватории спустя 1 час и 15 минут после регистрации гамма-всплеска.
Фотометрические и спектроскопические наблюдения являются методами измерения интенсивности электромагнитного излучения в видимом и инфракрасном диапазонах, а также его «цветового состава» (спектра). Первый метод позволяет определить яркость объекта, а второй — выявить химические элементы, присутствующие как в излучающем объекте, так и на пути его света к наблюдателю.
Согласно мнению ученых, данные указывают на продолжительную активность центрального объекта — компактного массивного тела, которое порождает излучение гамма-всплеска. Также отмечается, что окружающая среда вокруг взрыва изменялась от плотной, сформированной звездным ветром, до разреженной, похожей на межзвездное вещество.
Особый интерес исследователей вызывают фотоны с энергией 18 тераэлектронвольт (ТэВ), зарегистрированные от источника GRB 221009A высокогорной обсерваторией LHAASO. Теоретически такие высокоэнергетические фотоны не должны были бы регистрироваться из-за их взаимодействия с оптическими фотонами в межгалактической среде на пути к наблюдателю, однако по каким-то причинам они все же достигли Земли. Анализ показал, что регистрация фотонов с энергией 18 ТэВ представляется маловероятной в рамках существующих моделей межгалактического фонового излучения. Зафиксировать такие фотоны от источников гамма-всплесков до сих пор считалось уникальным событием.
«Регистрация высокоэнергетичных фотонов дает возможность проверить фундаментальные законы физики, включая, к примеру, принцип постоянства скорости света. Однако пока беспокоиться не стоит, так как эффект регистрации таких высокоэнергетических фотонов можно объяснить неопределенностью модели межгалактического фонового излучения, а не нарушением Лоренц-инвариантности — основополагающего принципа, согласно которому скорость света остаётся постоянной во всех системах отсчета», — комментирует Сергей Белкин, аспирант базовой кафедры физики космоса Института космических исследований РАН факультета физики НИУ ВШЭ.