"Вояджер-2" — единственный рукотворный объект, который когда-либо посещал систему самой дальней от Солнца планеты Солнечной системы.
На снимке видны три захватывающих атмосферных образования (подписаны на снимке ниже):
Большое темное пятно (БТП) — антициклон, напоминающий знаменитое Большое красное пятно Юпитера. Однако в отличие от юпитерианского вихря, существующего столетиями, БТП Нептуна исчезло к 1994 году.
«Скутер» — белое треугольное облако, получившее свое прозвище за невероятную скорость движения. Оно совершает полный оборот вокруг планеты всего за несколько часов!
Малое темное пятно (МТП) — циклон в южном полушарии, исчезнувший одновременно с БТП в 1994 году. Ученые предполагают, что между этими образованиями была какая-то связь, но ее природа остается загадкой.
Все эти атмосферные структуры двигались на восток с разной скоростью и редко оказывались так близко друг к другу. Так что "Вояджеру-2" несказанно повезло запечатлеть их вместе.
Следующее свидание с Нептуном запланировано на 2049 год. Это может произойти в рамках миссии NASA Neptune Odyssey, запуск которой намечен на 2031 год.
Миссия Neptune Odyssey может стать настоящим прорывом в изучении системы Нептуна. Ученые планируют детально исследовать атмосферу планеты, изучить ее магнитное поле и внутреннюю структуру, а также проанализировать состав колец и спутников. Особое внимание хотят уделить Тритону — одному из самых загадочных спутников в Солнечной системе, чью поверхность покрывает азотный лед.
Пока же ученым придется еще четверть века довольствоваться крупицами данных, переданных легендарным "Вояджером-2".
20 октября 2014 года была открыта комета C/2014 UN271 Бернардинелли-Бернштейна (далее UN271), которая оказалась настоящим колоссом среди своих "сестер". Ее средний диаметр составляет 120-150 километров! Для сравнения, знаменитая комета 67P/Чурюмова-Герасименко, которую исследовал космический аппарат ESA "Розетта", имеет диаметр всего четыре километра.
Ядро UN271 примерно в 50 раз больше ядра типичной кометы, а масса этого космического гиганта оценивается в 500 триллионов тонн — это в 100 000 раз больше массы обычной кометы! По размерам UN271 сопоставима с астероидом Аврелия, который является одним из крупнейших объектов пояса астероидов, что находится между орбитами Марса и Юпитера.
Момент открытия UN271 стал рекордным по дальности обнаружения кометы — астрономы впервые заметили ее на расстоянии 4,3 миллиарда километров от Солнца. Для масштаба: среднее расстояние между Солнцем и Нептуном составляет 4,55 миллиарда километров.
Родиной этого космического гиганта является облако Оорта — гипотетическая сферическая область на окраине Солнечной системы. Это своеобразный "питомник" долгопериодических комет и малых ледяных тел, расположенный на расстоянии от 2 000 до 200 000 астрономических единиц (а.е.*) от Солнца. Именно оттуда прилетают многие кометы, включая эту гигантскую путешественницу.
*Одна а.е. — это среднее расстояние между Землей и Солнцем, составляющее примерно 150 миллионов километров.
Интересно, что изначально UN271 приняли за астероид. Только в 2021 году, когда объект находился на расстоянии 3,1 миллиарда километров от Солнца, астрономы заметили признаки кометной активности. Это удивительно, ведь на таком огромном расстоянии температура крайне низкая, и для начала сублимации льдов нужны особые условия.
Сейчас комета продолжает свое путешествие к внутренней области Солнечной системы. В январе 2031 года она достигнет перигелия — ближайшей к Солнцу точки своей орбиты, пролетев мимо системы Сатурна. После этого UN271 начнет долгий путь обратно в облако Оорта, и следующая встреча с ней состоится не раньше, чем через... три миллиона лет.
Комета UN271, безусловно, представляет большой интерес для ученых. Хотя этот объект и не подлетит близко к Земле, современные телескопы и методы анализа позволят астрономам получить ценные данные о физических свойствах, размерах и даже составе этой уникальной кометы-гиганта.
Изучение UN271 расширит наши знания об объектах, населяющих далекое и малоизученное облако Оорта, а также, возможно, даст дополнительную информацию о ранних этапах формирования Солнечной системы.
Так что в ближайшее десятилетие астрономы будут внимательно следить за UN271, стараясь по максимуму использовать эту редкую возможность исследовать столь далекого и необычного "гостя" из облака Оорта. И очень жаль, что мы не можем получить образцы с поверхности этого бесценного — с научной точки зрения — объекта.
История астрономии знает немало интригующих загадок, и одна из них связана с орбитальным движением Меркурия, привлекшим пристальное внимание ученых XIX века.
Расчеты показывали, что перигелий орбиты Меркурия (ближайшая к Солнцу точка орбиты) смещается на 526,7 угловых секунды за столетие из-за гравитационного влияния других планет. Однако наблюдаемое смещение было чуть больше предсказанного ньютоновской механикой (примерно 570 угловых секунд). Эта небольшая разница, всего около 43 угловых секунд за столетие, не могла быть объяснена в рамках классической физики. Такое несоответствие породило гипотезу о существовании неизвестной планеты между Солнцем и Меркурием, получившей название Вулкан.
Фантазия о планете Вулкан
Астрономы того времени разделились на два лагеря. Большинство считало, что аномалию в движении Меркурия можно объяснить только гравитационным влиянием дополнительной планеты, наблюдать которую напрямую мешают чрезмерная яркость Солнца и ограниченные возможности телескопов. Однако некоторые ученые проявили научную смелость, предположив, что дело не в скрытой планете, а в неполноте наших знаний физических законов Вселенной.
Спор разрешился с появлением общей теории относительности Эйнштейна, которая смогла точно описать орбитальное движение Меркурия без привлечения гипотетических планет. Это стало триумфом научного метода и важным уроком: иногда нужно пересматривать базовые представления, а не прибегать к "заплаткам" в виде новых небесных тел.
Современные исследования
Но что же сегодня мы знаем о пространстве между Солнцем и Меркурием? Современные исследования показывают, что там находится около 200 астероидов, пересекающих орбиту ближайшей к светилу планеты. При этом они настолько малы, что не влияют на статус Меркурия как полноценной планеты — для этого потребовалось бы наличие объектов сопоставимой массы, как в случае с Плутоном.
Особый интерес представляют гипотетические вулканоиды — астероиды, которые могли бы стабильно вращаться между Меркурием и Солнцем. Космический аппарат NASA "Мессенджер" и обсерватория NASA STEREO участвовали в масштабных поисках таких объектов, но безрезультатно.
Ученые пришли к выводу, что если вулканоиды и существуют, то их размер не превышает шести километров, а количество не достигает и десяти штук.
Таким образом, современная наука может уверенно утверждать: между Солнцем и Меркурием нет никакой планеты. Эта история показывает, как развитие теоретической физики и технологий помогает нам лучше понимать устройство Солнечной системы и Вселенной в целом.
Два года назад космический телескоп NASA "Джеймс Уэбб" поставил астрономов в тупик. В ранней Вселенной были обнаружены галактики, которые, казалось, не могли существовать — они выглядели слишком большими и зрелыми для своего возраста. Теперь эта загадка получила неожиданное решение, которое может изменить наше понимание формирования первых черных дыр.
Эти необычные объекты (аномально зрелые галактики), получившие название "Маленькие Красные Точки" (Little Red Dots, LRDs), существовали, когда Вселенной было "всего" 600 миллионов лет. Изначально их параметры не укладывались в существующие модели эволюции галактик — для формирования таких массивных структур нужно было существенно больше времени.
Масс-медиа, подхватив эту информацию и исказив ее до неузнаваемости, стали причиной появления бесчисленного множества антинаучных публикаций о том, что наблюдения "Джеймса Уэбба" якобы доказали, что никакого Большого взрыва не было, а если и был, то произошел значительно раньше.
Но все это, разумеется, не соответствовало действительности, и разгадка природы "невозможных галактик" крылась в их центрах.
Тайна "Маленьких Красных Точек"
В сердцах этих древних объектов были обнаружены гигантские черные дыры, масса которых составляет около 10% от массы всей системы. Для сравнения: в современных галактиках, включая наш Млечный Путь, на сверхмассивные черные дыры в среднем приходится около 0,01% от массы галактики. Присутствие таких массивных объектов в столь ранний период существования Вселенной стало убедительным доказательством теории прямого коллапса.
Согласно этой теории, первые сверхмассивные черные дыры появились не в процессе гибели массивных звезд с последующим набором массы, а были рождены в ходе прямого коллапса гигантских облаков газа. В условиях ранней Вселенной эти облака могли коллапсировать целиком, минуя стадию формирования звезд, что приводило к появлению черных дыр массой в десятки или даже сотни тысяч солнечных масс.
Наблюдения "Джеймса Уэбба" показывают, что около 70%* "Маленьких Красных Точек" демонстрируют признаки присутствия таких черных дыр — в их центральных областях наблюдается вращение газа со скоростью около 1 000 километров в секунду.
*Речь именно о подтвержденных сверхмассивных черных дырах. По факту же нет никаких сомнений в том, что все LRDs наделены этими гигантскими "гравитационными монстрами".
Анатомия "Маленьких Красных Точек"
По сути, каждая "Маленькая Красная Точка" - это:
Огромная черная дыра, на массу которой приходится около 10% от массы всей системы;
Примечательно, что "Маленькие Красные Точки" существовали только в определенный период ранней Вселенной, а затем... исчезли, что делает их еще более интригующими для изучения.
"Маленькие Красные Точки" представляли собой особый класс объектов — своего рода "эмбрионы" будущих галактик, где главную роль играли именно сверхмассивные черные дыры.
Большинство "Маленьких Красных Точек" эволюционировали в современные галактики, но те, что "исчезли", на самом деле превратились в системы со спящими сверхмассивными черными дырами. Другими словами, за миллиарды лет черные дыры "сожрали" все вокруг и из-за дефицита материи "заснули". Это, так сказать, бракованные протогалактики, которые мы не можем наблюдать ни в оптическом, ни в инфракрасном диапазонах.
Открытие, сделанное на основе новых наблюдений "Джеймса Уэбба", проливает свет на происхождение первых сверхмассивных черных дыр и помогает лучше понять процессы формирования галактик в молодой Вселенной.
Глядя на захватывающие дух изображения дальнего космоса, многим из нас трудно представить, что у Вселенной могут быть границы. Кажется естественным полагать, что космическое пространство простирается бесконечно во всех направлениях. Однако некоторые современные космологические модели рассматривают возможность того, что наша Вселенная — пусть и невообразимо огромная — все же может быть конечной.
Согласно теории Большого взрыва, примерно 13,8 миллиарда лет назад наша Вселенная начала расширяться из сингулярного состояния, достигнув того, что мы можем лицезреть сегодня. Но что находится за пределами этого расширения? Есть ли у Вселенной границы?
Безграничная конечность
Представьте себе муравья, ползущего по поверхности апельсина. Для него эта поверхность конечна, так как она имеет определенную площадь, но при этом у нее нет границ. Муравей может бесконечно долго двигаться в одном направлении, каждый раз возвращаясь в исходную точку. Похожим образом может быть устроена и наша Вселенная — конечная, но без границ.
Современная наука предполагает несколько возможных форм Вселенной:
Сферическая Вселенная
Если Вселенная имеет форму сферы, то она конечна, но безгранична. Это означает, что, двигаясь в одном направлении, вы в конечном итоге вернетесь туда, откуда начали (пример с муравьем и апельсином).
Тороидальная Вселенная
Другой вариант — Вселенная в форме тора (бублика). В этом случае пространство также будет конечным, но без границ.
Согласно данным космологических наблюдений, Вселенная, скорее всего, плоская. Однако даже в этом случае она может быть конечной, но с особой топологией, как в старых видеоиграх, где, выходя за один край экрана, персонаж появляется с противоположной стороны.
В поисках формы Вселенной
Как же ученые пытаются определить истинную форму Вселенной? Главным инструментом в этих исследованиях служит реликтовое излучение – древнейшее электромагнитное излучение во Вселенной, возникшее примерно через 380 000 лет после Большого взрыва, когда пространство достаточно остыло, чтобы свет мог свободно распространяться. Изучая характеристики этого излучения, заполняющего все космическое пространство, ученые получают важнейшие данные о крупномасштабной структуре Вселенной и ее геометрических свойствах.
Не менее важную роль играет и наблюдение за галактиками и галактическими скоплениями. Анализируя их распределение в пространстве и характер движения, космологи составляют все более точную картину геометрии Вселенной. Современные наблюдения указывают на то, что наше пространство удивительно близко к плоскому. Однако это не исключает возможности его конечности (о чем сказано выше) — просто масштабы настолько велики, что любое искривление становится заметным только на колоссальных расстояниях.
Важный прорыв в исследовании структуры Вселенной произошел в 2015 году с первой регистрацией гравитационных волн – колебаний самой ткани пространства-времени. Эти волны, предсказанные Эйнштейном за 100 лет до их открытия, стали новым инструментом в руках ученых, позволяющим исследовать геометрию космоса на самых больших масштабах.
Между наукой и философией
Рассуждая о конечной Вселенной, мы неизбежно приходим к вопросу: что находится за ее пределами? Однако этот вопрос может оказаться таким же бессмысленным, как поиск точки севернее Северного полюса. Само понятие "за пределами" подразумевает наличие некоего внешнего пространства, в которое эти пределы можно было бы вместить. Но наша Вселенная, даже если она конечная, может быть всем и сразу, и никакого "снаружи" просто не существует.
Конечность Вселенной могла бы существенно повлиять на наше понимание фундаментальных законов природы. Например, в конечном пространстве количество материи и энергии тоже не может быть бесконечным, что важно для многих космологических моделей.
Сегодня вопрос о том, конечна ли наша Вселенная или бесконечна, остается одной из самых волнующих и глубоких загадок, стоящих перед космологией. Каждое новое наблюдение далеких галактик, каждый технологический прорыв приближают нас — пусть и на крошечный шаг — к пониманию истинной природы пространства, в котором разворачивается удивительная история человечества.
Возможно, путь к разгадке этой тайны будет долгим и полным неожиданных открытий. Но пока ученые неустанно трудятся над раскрытием секретов Вселенной, мы можем каждую ночь поднимать глаза к звездному небу, наполняя свою жизнь трепетом, восхищением и неутолимой жаждой познания. Ведь стремление понять мироздание делает нас теми, кто мы есть — мыслящими и вечно ищущими существами в необъятном океане космоса.
Любопытнейшее исследование, опубликованное в рецензируемых научных журналах Nature Astronomy и The Astrophysical Journal Letters, предполагает, что миллиарды лет назад нашу Солнечную систему посетила звезда-странница.
Это древнее событие могло кардинально изменить облик нашей космической окрестности, превратив ее в то, что мы наблюдаем сегодня.
Согласно расчетам, безымянная звезда, немного уступающая Солнцу по массе и размеру, прошла на расстоянии около 110 астрономических единиц (а.е.*) от нашего светила. Для сравнения: среднее расстояние между Солнцем и Плутоном составляет "всего" 39,5 а.е.
*Одна а.е. равна среднему расстоянию между Землей и Солнцем и составляет примерно 150 миллионов километров.
Гравитационное воздействие этой незваной космической гостьи могло серьезно повлиять на расположение и орбиты многих объектов в ранней Солнечной системе.
"Это сближение было настолько тесным, что оно могло повлиять на судьбы целых миров", — говорит Сюзанна Пфальцнер, ведущий автор исследования и астрофизик из немецкого Исследовательского центра Юлиха (FZJ).
Рождение гипотезы
Гипотеза о "свидании" наше планетной системы с солнцеподобной звездой появилась в процессе изучения необычных траекторий объектов, расположенных далеко за орбитой Нептуна. Их орбиты наклонены и сильно вытянуты, что трудно связать с естественными эволюционными процессами Солнечной системы.
"Эти объекты могут быть свидетелями давно минувшего преступления", — поясняет астрофизик Амит Говинд, соавтор исследования.
Для проверки своей гипотезы ученые прибегли к компьютерному моделированию, проведя серию из более чем 3 000 симуляций. Результаты оказались поразительными.
Модель с участием звезды-странницы, посетившей Солнечную систему на заре ее существования, не только объяснила странные орбиты транснептуновых объектов, но и пролила свет на загадку карликовой планеты Седны. Этот далекий ледяной мир движется по крайне вытянутой орбите, удаляясь от нашего светила более чем на 937 а.е.!
Более того, гравитационное влияние звезды-странницы могло способствовать появлению необычных спутников у планет-гигантов. По словам Симона Портегиса Цварта, одного из авторов исследования, некоторые транснептуновые объекты могли быть перемещены во внутренние области Солнечной системы, где их захватили гравитационные поля крупных планет. Например, Феба — самый массивный из нерегулярных удаленных спутников Сатурна — скорее всего, был сформирован где-то за орбитой Нептуна.
"Космос хранит свои секреты, но он также оставляет подсказки, — заключает Пфальцнер. — Подобно археологам, мы по крупицам собираем свидетельства давно минувших космических событий, и каждая необычная орбита может быть ключом к разгадке тайн прошлого".
14 июля 2015 года космический аппарат NASA "Новые горизонты" получил самые детальные на сегодняшний день снимки Никты — одного из пяти известных спутников Плутона.
Недавно исторические фотографии были объединены и обработаны с помощью современных алгоритмов машинного обучения, что позволило получить довольно детальное цветное изображение (ниже) загадочного объекта.
Никта, открытая 15 мая 2005 года космическим телескопом NASA/ESA "Хаббл" одновременно со спутником Гидра, представляет собой необычное небесное тело неправильной формы размером примерно 50 × 33 × 31 километров. Свое название спутник получил в честь древнегреческой богини ночи Нюкты (Никты).
Долгое время считалось, что Никта, как и другие малые спутники Плутона, образовалась из обломков, выброшенных при столкновении Плутона с крупным объектом пояса Койпера. Однако эта гипотеза не может объяснить удивительно высокую отражательную способность спутника. Современные исследования предполагают, что Никта сформировалась независимо от Плутона из первичного облака ледяных частиц — остатков материала, из которого формировалась Солнечная система. А уже после объект бы "похищен" Плутоном и превращен в его естественный спутник.
Поверхность Никты покрыта крупнозернистым водяным льдом, температура которого не поднимается выше -230°C. При таком экстремальном холоде лед приобретает прочность, сравнимую с земными горными породами.
Особый интерес ученых вызывает крупное темное пятно на поверхности спутника — след древнего столкновения с другим космическим телом. Красновато-коричневый материал в этой области мог принадлежать объекту-импактору или был выброшен из недр самой Никты.
В настоящее время NASA и Юго-западный исследовательский институт рассматривают возможность организации новой миссии к системе Плутона для детального изучения карликовой планеты и ее загадочных спутников. Это может помочь раскрыть тайны формирования и эволюции объектов как окраинах Солнечной системы, так и в ее внутренней области.
Все крупные космические тела во Вселенной, которые мы наблюдаем — от планет до звезд — имеют сферическую форму. И чем массивнее объект, тем более идеальной становится эта сфера. Почему же природа так настойчиво выбирает именно эту форму? Давайте разберемся на примере планеты.
Итак, все дело в гравитации. Когда планета формируется, она начинает притягивать к себе все больше материи — пыль, газ, астероиды. С ростом массы усиливается и гравитационное поле. Сила тяжести всегда направлена к центру тела, стремясь придать ему максимально компактную форму. А самая компактная форма в природе — это сфера.
Почему планета не может быть кубической?
У куба есть углы, которые находятся дальше от центра массы, чем остальные части. Гравитация не позволит этому существовать — она будет "стягивать" углы к центру, пока планета не примет форму шара — самую устойчивую форму для массивных космических объектов.
Кроме того, кубическая форма создала бы огромные перепады давления и температуры. Углы куба испытывали бы колоссальное напряжение, что привело бы к их разрушению. В итоге планета все равно бы "схлопнулась" в шар.
Малые космические тела, такие как кометы, астероиды и небольшие спутники, часто имеют неправильную форму, потому что их масса слишком мала, чтобы гравитация могла "вылепить" из них сферу. Для сравнения: астероид Психея с диаметром около 226 километров имеет неправильную форму, в то время как Земля с диаметром 12 756 километров стремится к идеальной сфере.
Впрочем, даже планеты не являются безупречными шарами. Из-за вращения вокруг своей оси они слегка сплющиваются на полюсах и расширяются на экваторе (звезды, между прочим, тоже). Это называется экваториальным утолщением. Например, полярный радиус Земли на 21,38 километра короче экваториального.
Интересный факт: Мимас, 396-километровый спутник Сатурна, является самым маленьким известным космическим телом, обладающим сферической формой из-за собственной гравитации.