Преобразователь анодного напряжения 310В из 12В для питания радиоламп на UC3843
Для любителей ламповой аппаратуры, желающих использовать ее в автомобиле или в любом другом месте с автономным питанием от аккумулятора 12В, обычно встает вопрос получения высокого анодного напряжения из бортовой сети . Традиционный путь — преобразование 12В в 220В переменного тока с последующим выпрямлением. Здесь предлагается немного другой вариант.
Рис.1
Что касается накального напряжения, то в бортовой сети автомобиля оно составляет около 13В. Это позволяет без особых проблем получить 6.5В для накала, например, последовательным включением двух однотипных ламп. Также можно использовать понижающий стабилизатор достаточной мощности.
Значительно сложнее обстоит дело с получением высокого анодного напряжения. Представляем импульсный преобразователь, позволяющий получить стабильное постоянное напряжение 310В от бортовой сети автомобиля с возможностью нагрузки десятки Вт. При этом, 310В не является фиксированным значением – выходное напряжение можно регулировать в достаточно широких пределах подбором сопротивления одного резистора.
Принципиальная схема
Рис. 1. Схема DC-DC преобразователя для питания ламповой аппаратуры от 12В, получение анодного напряжения 310В.
Основой преобразователя является широко используемая в импульсных источниках питания и DC/DC преобразователях микросхема A1 типа UC3843. Различные производители могут выпускать ее с разными префиксами, но всегда с числовым индексом 3842, 3843 или 3844. Хотя микросхема доступна в корпусах SOIC-8 и SOIC-14, в данной конструкции используется вариант в корпусе DIP-8. Важно отметить, что 14-выводной корпус имеет отдельные выводы питания и земли для выходного каскада, в то время как в 8-выводном они объединены.
Микросхема UC3843 предназначена для построения импульсных источников питания и преобразователей с широтно-импульсной модуляцией (ШИМ). Из-за невысокой мощности выходного каскада микросхемы и амплитуды выходного сигнала, достигающей напряжения питания микросхемы, в качестве ключа совместно с ней обычно применяется мощный MOSFET транзистор, что и реализовано в данной схеме.
Назначение выводов микросхемы UC3843 (8-выводный вариант):
Comp (вывод 1): Выход компенсации усилителя ошибки. Для стабильной работы к нему подключается конденсатор, соединенный со вторым выводом, для компенсации АЧХ усилителя ошибки.
Vfb (вывод 2): Вход обратной связи. Напряжение на этом выводе сравнивается с внутренним образцовым напряжением, влияя на скважность выходных импульсов для стабилизации выходного напряжения.
C/S (вывод 3): Вход сигнала ограничения тока. Обычно подключается к датчику тока (низкоомному резистору) в цепи истока выходного транзистора. При превышении порогового значения тока, ИС прекращает работу и переводит транзистор в закрытое состояние. В данной схеме датчик тока не используется (ввиду отсутствия подходящего низкоомного резистора у автора), поэтому вывод 3 через резистор R6 соединен с общим минусом.
Rt/Ct (вывод 4): Вывод для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора определяется резистором R4 и конденсатором C3. Частота может быть изменена в широких пределах, ограничиваясь сверху быстродействием выходного транзистора, а снизу — мощностью сердечника импульсного трансформатора. Практически выбирается в диапазоне 35-85 кГц, в данном случае около 55 кГц.
Gnd (вывод 5): Общий вывод минуса питания.
Out (вывод 6): Выход, который подключается к затвору выходного МДП транзистора для управления его открыванием импульсами.
Vcc (вывод 7): Вход питания микросхемы.
Vref (вывод 8): Выход внутреннего источника опорного напряжения (5В, до 50 мА).
Микросхема A1 формирует на выводе 6 импульсы, поступающие на затвор транзистора VT1 (IRFB3207Z). Резистор R7 ограничивает импульсный ток заряда емкости затвора полевого транзистора. Стабилитрон VD5 (18В) служит для ограничения амплитуды выбросов напряжения на затворе VT1, защищая транзистор. Схема будет работоспособна и без VD5.
В стоковой цепи VT1 включена первичная обмотка повышающего импульсного трансформатора Т1. Переменное напряжение, наводимое во вторичной обмотке Т1, выпрямляется с помощью диодов VD3 (UF5408) и VD4 (UF5408) и сглаживается конденсатором С7 (100мкФ/400В). Полученное постоянное напряжение с выпрямителя через делитель напряжения (R1, R2, R3) поступает на вывод 2 (вход обратной связи) микросхемы UC3843 для стабилизации выходного напряжения.
Выходное напряжение устанавливается или изменяется подбором сопротивления резистора R2. Важно проводить замену R2 только при выключенном питании.
Сердечник: Ш-образный ферритовый с центральным керном размером 12х15мм (или другой вариант с сечением 1.8-2 см²).
Зазор: 0.8 мм по бокам и 1.6 мм в центральном керне.
Намотка:
Вторичная обмотка (первая половина): 40 витков обмоточного провода диаметром 0.6-0.7 мм.
Изоляция: Фторопласт.
Первичная обмотка: 6 витков, намотанных в 12 проводов диаметром 0.6-0.7 мм (по 3 слоя, по 4 провода в каждом).
Изоляция: Фторопласт.
Вторичная обмотка (вторая половина): 40 витков обмоточного провода диаметром 0.6-0.7 мм.
Таким образом, первичная обмотка содержит 6 витков, намотанных в 12 проводов диаметром 0.6-0.7 мм. Вторичная обмотка суммарно имеет 80 витков провода диаметром 0.6-0.7 мм.
Очередной сюрприз из поднебесной или как китайцы при помощи всего лишь двух радиоламп времён СССР собирают современные ламповые усилители звука Hi-Fi класса.
В СССР радиолампы начали массово применяться для производства электроники ещё с 1920 года, на заре эпохи молодого советского государства. Многие читатели этой статьи уже не застали ламповые телевизоры, радиолы, радиоприемники. Ибо были рождены в эпоху цифровых технологий.
Ну а более взрослые читатели могут вспомнить те ламповые времена. Когда по внезапно переставшему работать ламповому телевизору нужно было крепко постучать, чтобы он опять начал работать. А когда этот метод уже не помогал, приходилось снимать заднюю крышку телевизора и шевелить лампы, в первую очередь, которые не светились. Поскольку чаще всего, пропадал контакт в ламповой панели по накальной цепи, имеющей наибольший ток. А именно разогретая нить накала и светилась в лампе. Многие заднюю крышку после этого уже не устанавливали обратно, так как лампы приходилось шевелить все чаще и чаще. А когда уже и это не помогало, приходилось пропаивать гнезда ламп, контакты которых в буквальном смысле отваливались от печатной платы в местах пайки.
Так происходит отвал контактов от пайки от частых циклов нагревания-остывания
Уж очень близко от этих контактов находилась раскаленная колба лампы, которая их нещадно нагревала. И из-за различного температурного коэффициента расширения латунных контактов ламповой панели и припоя, при многократных циклах нагревания и остывания, припой просто отслаивался от контактов. Электрический контакт пропадал и естественно, телевизор переставал работать. Но и этот метод решал проблему лишь на некоторое время, и все повторялось снова. В общем было весело и интересно.
Наряду с большой номенклатурой радиоламп производилась в те времена и радиолампа 6Ж1П – высокочастотный пентод. Разработана она была в Советском Союзе в 1950-х годах. Конструктивно она состоит из стеклянной колбы, из которой откачан воздух. Внутри находятся 5 электродов, о количестве которых говорит её название – пентод (от слова пента – пять).
Устройство радиолампы 6Ж1П
Подробно рассматривать принцип работы электровакуумных приборов, коим и является радиолампа 6Ж1П мы не будем.
По совокупности технических параметров радиолампа 6Ж1П оказалась достаточно удачной и получила широкое распространение как в радиотелевизионной аппаратуре, так и в измерительных приборах тех времён. Предназначалась она для усиления сигналов в диапазоне 0,5-30 МГц и имела очень малые собственные шумы и низкие нелинейные искажения. В ламповых телевизорах чаще всего она использовалась в усилителях промежуточной частоты.
Из всех её многочисленных параметров отмечу только те, которые нам нужны будут позже. Это номинальное напряжение на аноде – 120 В и ток в цепи анода от 5 до 10 мА.
Номинальные параметры радиолампы 6Ж1П
Также напомню, что она высокочастотная и не предназначена для применения в усилителях звуковых частот. А через некоторое время, доподлинно дата неизвестна, китайцы начали производить в своей стране полный аналог (вернее точную копию) нашей радиолампы 6Ж1П с названием 6J1, просто заменив в названии русскую букву на латинскую и исключив последнюю.
Судя по всему, произвели в поднебесной неимоверное их количество. Но поскольку эпоха радиоламп закончилась, то они стали не нужны. А осталось их очень много, не выкидывать же, китайцы приучены из всего извлекать прибыль. Вот они и придумали «вкорячивать» эти лампы в различные усилители звука и декларировать их как усилители Hi-Fi класса, то есть высокой точности. Естественно с теплым ламповым звуком, как раз то что и нужно уважаемым меломанам. В большом своем многообразии они продаются сейчас на Алиэкспрессе. Стоит отметить что в подобных усилителях китайцы используют не только лампы 6Ж1П, но и многие другие, например, 6К4П.
Рассмотрим один из таких – оконечный усилитель звуковой частоты с выходной мощностью 20 Вт на канал, выглядит он так:
Позади радиоламп нетрудно заметить алюминиевый радиатор с двумя пятиногими полупроводниковыми приборами, которые явно намекают на то, что это не совсем ламповый усилитель. Но чтобы в этом окончательно убедиться нужно посмотреть на его электрическую схему:
И да, так и есть, сигнал с выхода усилительного каскада, собранного на лампе 6Ж1П (анод лампы, 5-й вывод по схеме) поступает для дальнейшего усиления на выходной каскад, собранный на микросхеме LM1875 (вход 1 по схеме). То есть получается, что это не ламповый, а гибридный усилитель.
Кроме того, для питания анода лампы в этом усилителе используется низкое напряжение 25 В. Вспоминаем из вышесказанного, что номинальное напряжение анода составляет 120В, при котором обеспечивается оптимальная работа лампы с наименьшими искажениями и максимальным усилением. Также на схеме видно, что анодное сопротивление R5 имеет очень низкое сопротивление. Для сравнения приведу стандартную схему усилителя на лампе 6Ж1П, для которого оптимальный режим работы задан номинальным напряжением анода, номинальным значением анодного сопротивления и других элементов обвеса.
Электрическая схема стандартного резистивного усилителя с общим катодом на лампе 6Ж1П
При таком заниженном анодном напряжении в усилителе звука, и низком анодном сопротивлении рабочая точка лампы будет находиться в нелинейной области. И сделано это умышленно. Но для чего? Для того чтобы внести как можно больше искажений с усиливаемый сигнал? Но по логике класс усилителя Hi-Fi подразумевает наоборот минимальные искажения сигнала.
Теперь подадим на вход лампового усилителя синусоидальный сигнал с частотой 1 кГц, и сравним осциллограммы сигналов на его входе и выходе.
Осциллограмма сигнала на входе и выходе радиолампы 6Ж1П
Видим, что синусоидальный сигнал на выходе лампы инверсный и имеет нормальную форму. В инверсии нет ничего необычного, поскольку усилительный каскад построен по схеме с общим катодом, который инвертирует сигнал. А вот амплитуда выходного сигнала, которая больше амплитуды входного всего в 1,7 раз вызывает очень большое недоумение. Коэффициент усиления 1,7 для лампового каскада это крайне низкое значение. Это еще раз подтверждает, что радиолампа с некой целью загнана в ненормальный для неё режим работы.
Ладно, не буду уже делать вид, что не знаю, с какой целью радиолампа загнана в такой режим. Прекрасно знаю, что сделано это для максимального, характерного для радиоламп, искажения усиливаемого сигнала. То есть, в этом усилителе всего лишь одна радиолампа вносит такие искажения, как их суммарно вносит множество нормально работающих ламповых усилительных каскадов в полноценных ламповых усилителях. Так сказать, она окрашивает мертвый полупроводниковый звук в теплый ламповый, на радость ламповым меломанам, причем не убирая из звука искажения, внесенные полупроводниками. Получается эдакий комбо-звук с искажениями от полупроводников и от радиоламп. Ух, какое же это звуковое месиво.
Поскольку на вход усилителя был подан чистый синусоидальный сигнал, не имеющий в своем составе гармоник, то никаких гармонических искажений на выходе радиолампы мы и не увидим.
А теперь подадим на вход усилителя прямоугольный сигнал (состоящий из гармоник) и сравним спектр сигнала на входе и на выходе радиолампы.
Спектр сигнала на входе лампового усилительного каскада
Спектр сигнала на выходе лампового усилительного каскада
Как видно 2-я гармоника, которую так любят все ламповые меломаны значительно возросла по отношению к первой (основной) гармонике. А третья стала даже меньше.
Отсюда делаем вывод, что да, радиолампы в этом усилителе используется не для усиления сигнала, а для «окрашивания» его ламповым магическим звучанием. И что данный усилитель и подобные ему не имеют ничего общего с классом Hi-Fi, поскольку искажают сигнал очень сильно.
Подобные ламповые, а вернее лампово-полупроводниковые усилители производятся китайцами в достаточном многообразии модификаций. Например, как рассматриваемый в этой статье усилитель с выходным полупроводниковым усилителем мощности для работы непосредственно на акустические системы. Так и в виде предварительных усилителей с различными радиолампами.
Да, конечно, китайцы мягко говоря лукавят, позиционируя эти усилители как ламповые, Hi-Fi класса. Но тут хотя бы сигнал проходит через ламповый каскад и (усиливается) искажается им. А есть усилители, в которых сигнал вообще минует радиолампу, которая лишь имитирует работу своим свечением. Для этого на неё подают только напряжение накала, а остальные выводы не задействуются вовсе. Усиление в этом случае осуществляется полупроводниковыми элементами. Иногда, для пущей убедительности участия радиоламп в усилении сигнала, через их контакты, которые соединены внутри лампы между собой, подают питание усилителя (в случае с 6Ж1П это 2 и 7 выводы). Вынул лампу из гнезда, цепь питания разомкнулась, усилитель замолчал. Вставил лампу на место, и усилитель заиграл. Подобный усилитель представлен на фото ниже.
Общий вид усилителя
Плата с ламповыми панелями соединена шлейфом с платой усилителя
Сверху (по фотографии) виден полноценный усилитель на полупроводниковых элементах
По фотографиям прекрасно видно, что это полноценный полупроводниковый усилитель, который радует глаз меломанов наличием 4-х светящихся радиоламп, размещенных на обособленной плате. Плата подключена к усилителю шлейфом, по которому на лампы подается накал и проходят транзитные линии питания каких-либо узлов усилителя, чтобы с извлеченными лампами он не работал. Естественно, что участия в работе усилителя они не принимают.
В защиту ламповых усилителей хочу сказать, что если усилитель действительно полностью собран на лампах по удачной, правильной электрической схеме, то и звучание будет отличным. На голову выше, чем у полупроводниковых усилителей. А рассмотренный в статье псевдоламповый усилитель – это безобразная поделка.
К сведению
Материнская плата AOpen AX4B-533 Tube
Плата под сокет 478. Необычно в ней то, что для звука используется ламповый усилитель. Лампа произведена фирмой SOVTEK в России, и относится к hi-end сегменту.
Комплект поставки включал:
Упаковку: коробка, выполненная в темных тонах, с концептуальным изображением и дополнительным отделением, содержащим собственно вакуумную лампу;
Документацию: руководство пользователя материнской платы, описание функции Tube, плакат с кратким описанием основных моментов установки и настройки платы — все на английском языке;
Кабели: один ATA66/100/133, один ATA33 и шлейф для подключения дисковода;
Планку на заднюю панель компьютера с аудио разъёмами;
Двойной триод SOVTEK 6922;
Заглушку на заднюю панель платы;
2 компакт-диска с программным обеспечением, включающим:
необходимые для работы платы драйверы;
руководства пользователя некоторых моделей материнских плат компании в формате PDF;
DirectX 8.1;
Adobe Acrobat Reader 5.05;
DocuCom Reader (для чтения файлов формата PDF);
программы для системного мониторинга;
AOConfig;
E-Color;
Norton CrashGuard 1.0 (раритет, 95-й год!);
Norton Antivirus 98 (аналогично, 98-й год);
Norton Antivirus 2002.
Разводка платы необычна, и виной тому, естественно, наличие лампового усилителя — достаточно сказать, что на полноразмерную ATX-плату влезло всего 3 слота PCI. В результате разъемы аудиовходов, IDE, FDD и питания расположены не совсем удобно, а при вставленной видеокарте затрудняется работа с модулями памяти. Доступ к перемычкам не затруднен даже при установке платы в корпус, их краткое описание приведено на текстолите платы.
В трехканальном импульсном стабилизаторе напряжения питания процессора применены 8 конденсаторов по 3300 мкФ и 3 по 2200 мкФ.
На плату интегрированы следующие контроллеры:
звуковой, реализованный на базе возможностей чипсета и AC'97-кодека Avance Logic ALC650, с разъемом для подключения фронтальных аудиовходов/выходов и возможностью подключения аудиосистем 5.1;
сетевой, реализованный на базе возможностей чипсета, с поддержкой 10Base-T/100Base-TX.
На плате применены фирменные технологии компании: AOpen Vivid BIOS (заставка при загрузке системы), AOpen Dr. Voice II (голосовое оповещение о возникновении проблем при запуске системы) и AOpen EzRestore (резервное сохранение данных на жестком диске).
Для защиты от перегибов текстолита при установке массивных процессорных кулеров на оборотной стороне платы смонтирована специальная металлическая пластина.
Наличие напряжения +5 В в режиме StandBy индицируется красным светодиодом на плате.
На плате нет разведенных, но нераспаянных элементов.
На плате используются возможности системного мониторинга микросхемы Winbond WT83627HF-AW. Контролируются:
напряжения процессора, +3,3, ±5 и ±12 В, VBAT, +5 В Standby;
частота вращения 3 вентиляторов;
температуры процессора (встроенным датчиком процессора) и платы (встроенным датчиком платы).
На плате имеется 3 разъема для регулируемого подключения вентиляторов.
Краткие характеристики платы: разъемы памяти — 3 DDR SDRAM; слоты расширения — AGP/ 3 PCI; порты ввода/вывода — 2 COM/ LPT/ 2 PS/2/ 6 USB 2.0; размеры — 305х245 мм.
Настройка платы осуществляется:
Использовалась версия BIOS R1.02, как последняя из доступных на время проведения тестирования.
Для подобного продукта важна не скорость, не богатый выбор настроек и не функциональность (а ими модель и не блещет) — плата рассчитана на человека, желающего купить почти произведение искусства вместо анонимной китайской поделки. Но имейте в виду, что это именно то самое «почти», да еще в сочетании с отнюдь не выдающимися характеристиками главной особенности платы — ее звукового тракта. Но это уже другая история.
Пост навеян 7, 9 мая и особенно просмотр последней серии сериала "Аллигатор".
Суть, действие в сериале происходит в глубоком тылу, в Алма-Ате. И вот там шпиён-диверсант достает из под куста рацию в вещь-мешке и что-то там быстро передает. И я что-то задумался, ну вот насколько это рация "бьёт"? Ну на 10км, ну на 50км. Кому он там в радиусе 50 км от Алма-Аты в 40-х годах мог что передать? Не, я понимаю, бывают там "прохождения" радиоволн, отражения всякие и можно установить связь на КВ и за тысячи км. Но это ж редкость, это ж ловить момент надо, а не надеяться на это на регулярной основе.
А как партизанские отряды в белорусских лесах связывались с "центром"? В кино прибегает такой разведчик, аааа, срочная информация, надо передать и передают. Его, что там в эфире круглосуточно слушают? Ну может и слушают, но где, в Москве? А он из белорусской чащобы сразу до Москвы добивает? Так и партизанских отрядов то не один, сотни и что, всех круглосуточно слушают? Ну наверное расписание связи какое-то есть, но тогда "не срочно" получается.
Может кто на пикабу, на дзене, вк или ютубе осветил этот момент?
В России и других странах до сих пор выпускаются радиолампы, изобретенные еще в 1904 году. Не смотря на то, что их сильно потеснили полупроводниковые приборы, радиолампы используются, и по сей день. В высококачественной аппаратуре они просто незаменимы. Так как по некоторым важнейшим параметрам они сильно превосходят транзисторы. В современное время всеобщей миниатюризации всех электронных устройств складывается ошибочное мнение о безнадежном устаревании радиоламп и их полной непригодности. Да, конечно же сейчас радиолампы не находят такого широкого применения, как это было перед началом массового производства полупроводниковых приборов. Но, тем не менее, они не только находят применение, но и в некоторых электронных устройствах до сих пор и вовсе незаменимы.
Устройство и принцип работы радиоламп, как и других электровакуумных приборов достаточно прост. Самая простая радиолампа (диод) состоит из герметичной стеклянной колбы, из которой откачан воздух, то есть, создан вакуум.
В нее заключены два электрода – анод и катод, а также вспомогательный элемент – подогреватель. Катод во время работы лампы нагревается подогревателем до высоких температур (от 800 до 2000о С) и начинает эмитировать (испускать) электроны. Для обеспечения высокой эмиссионной способности катода, он покрывается специальным активным слоем, который при одинаковой температуре с металлом способен эмитировать гораздо большее количество электронов.
Если на анод относительно катода подать положительное напряжение, то под воздействием электрического поля электроны устремятся к аноду, и возникнет электрический ток.
Если на аноде будет присутствовать отрицательно напряжение, то электрическое поле будет отталкивать электроны от анода, и электрический ток будет отсутствовать. То есть электрический ток в одну сторону проходит, а в другую нет. Так работает электровакуумный диод.
Если между катодом и анодом добавить третий электрод – управляющую сетку, то появится возможность регулировать величину тока через радиолампу путем изменения напряжения на управляющей сетке, конечно же, при положительном напряжении на аноде. Если на управляющую сетку подать отрицательное напряжение, то электрическое поле сетки будет отталкивать излучаемые катодом электроны обратно к катоду, и не пропускать их к аноду. В результате чего электрический ток будет отсутствовать. Если на сетку подать положительное или «нулевое» напряжение, то электрическое поле сетки не будет отталкивать электроны, и они беспрепятственно устремятся к аноду, образуя электрический ток через радиолампу.
Теперь мы имеем усилительный электровакуумный прибор-триод. Название, которого само за себя говорит, что в нем используется три электрода.
Преимущества радиоламп
Радиолампы, несмотря на все свои недостатки, имеют и ряд существенных преимуществ перед полупроводниковыми приборами (транзисторами).
Стабильность температурного режима работы
Радиолампы имеют более высокую температурную стабильность режима работы, которая обусловлена тем, что радиолампа изначально является высокотемпературным элементом. Ее катод может разогреваться до двух тысяч градусов, другие элементы также нагреваются до температур, многократно превышающих температуру внешней среды.
В результате этого радиолампа находится все время в одном стабильном высокотемпературном режиме работы, который не подвержен влиянию колебаний температуры окружающей среды и изменениям нагрузки на радиолампу (изменению величины тока через нее).
Поэтому усилительные и другие схемы собранные на радиолампах не нуждаются в отличие от транзисторных схем в цепочках термостабилизации и цепях обратной связи компенсирующих температурную нестабильность их режима работы. Схемы на радиолампах получаются более простыми и имеют меньшее количество усилительных каскадов. Обвязка усилительных каскадов более простая и имеет меньшее количество элементов.
В транзисторных же схемах температурный режим работы транзисторов крайне нестабилен и сильно зависит от их температуры, которая в свою очередь зависит от мгновенной мощности рассеиваемой ими. Например, при усилении музыкального сигнала, в зависимости от изменения его мгновенной интенсивности и амплитуды меняется и нагрузка на транзистор, это приводит к колебаниям его температуры и колебаниям его коэффициента усиления вплоть до 30%. Этот эффект приводит к увеличению нелинейных искажений сигнала и без того немалых у транзисторных схем.
Для уменьшения этого негативного эффекта инженеры вынуждены использовать в транзисторных схемах различные цепочки термостабилизации и отрицательных обратных связей (ООС), что усложняет схемы и увеличивает количество используемых в них элементов.
Низкие нелинейные искажения
Схемы, выполненные на радиолампах, обладают меньшими гармоническими искажениями сигнала по сравнению со схемами на полевых и биполярных транзисторах. Даже, несмотря на применение в последних, различных схемотехнических решений направленных на уменьшение искажений. Дело в том, что усилительные свойства радиоламп и транзисторов определяются их крутизной характеристики. В случае с радиолампами это будет зависимость изменения анодного тока от изменения напряжения управляющей сетки при неизменных напряжениях на остальных электродах. А в случае, например с биполярными транзисторами это будет зависимость изменения тока коллектора от изменения напряжения между базой и эмиттером при неизменном напряжении на коллекторе.
Важным параметром крутизны характеристики является ее линейность. Именно от этого параметра и зависит, насколько сильно будут происходить нелинейные искажения сигнала.
У радиоламп крутизна характеристики более линейная, чем у полевых и тем более чем у биполярных транзисторов, у которых из трех перечисленных приборов она является самой нелинейной. Поэтому радиолампы обеспечивают наименьшие искажения сигналов. Нелинейность их крутизны характеристики пропорциональна корню третьей степени из величины тока анода. У полевых транзисторов нелинейность крутизны характеристики пропорциональна квадратному корню из величины тока стока, что уже сходу больше, чем кубический корень у радиоламп. А у биполярных транзисторов так и вообще нелинейность прямо пропорциональна току коллектора, что делает их крутизну самой нелинейной.
А кроме этого еще и питание радиоламп составляет порядка 300 В, против 30 В питания транзисторов (что в 10 раз больше). Это приводит к тому, что при равной усилительной мощности этих двух схем усилителей анодный ток радиолампы и его амплитуда колебаний будут в 10 раз меньше чем значение и амплитуда колебаний коллекторного тока транзистора. Благодаря этому колебания анодного тока радиолампы умещаются на небольшом линейном участке вольт-амперной характеристики (ВАХ), и не «достают» нелинейных участков, располагающихся по краям характеристики, как это может происходить у транзисторов.
Всем этим в совокупности и обуславливаются минимальные нелинейные искажения сигналов радиолампами.
Для того, чтобы в транзиторных усилителях уменьшить искажения применят общую ООС и большое количество местных ООС. Глубина этих ООС достигает немалых 60 дБ. И только так в транзисторных усилителях можно добиться значительного уменьшения искажений.
Но цепи ООС имеют инерционность, и не могут мгновенно реагировать на входящие воздействия (сигналы). Это приводит к тому, что каждая начальная часть сигнала (например, музыкального инструмента) в начальном периоде времени не будет успевать обрабатываться цепью ООС, и на выходе усилителя будет кратковременное 100% искажение сигнала, что на слух будет очень отчетливо восприниматься слушателем с хорошим «музыкальным» слухом.
В ламповых же усилителях цепи ООС либо не используются вовсе, либо их глубина обратной связи значительно ниже чем у транзисторных схем и не превышает 20 дБ.
Где используются радиолампы
Разработчики высококачественной (Hi-Fi) звуковой аппаратуры прекрасно знают о всех недостатках транзисторных схем и о преимуществах схем на радиолампах. Поэтому в звуковой аппаратуре Hi-Fi класса часто используют радиолампы. На сегодняшний день существует немало моделей высококачественных звуковых усилителей на радиолампах.
Так же в самых качественных микрофонах используются исключительно ламповые усилители.
Микрофон студийный ламповый МКЛ-4000 и Brauner VMA
Несмотря на всю свою древность, радиолампы до сих пор не вымерли. Они широко используются в оборонном и космическом секторе, а также в быту. Более того в большей части своего применения они незаменимы. Благодаря каким свойствам от них до сих пор не отказались.
Радиолампы – это электровакуумные приборы, в которых рабочий объем лишен воздуха, то есть, создан вакуум. А чтобы вакуум изолировать от окружающей среды, рабочий объем радиолампы заключается в герметическую оболочку, в которой также размещаются электроды.
Диод – самая простая радиолампа, которая имеет всего два электрода, катод и анод. Катод при работе диода разогревается до высоких температур, при этом происходит эмиссия (испускание) электронов с поверхности катода. Для увеличения способности катода испускать электроны, он покрывается специальным активным слоем.
Если на анод диода подать положительное напряжение, а на катод отрицательное (прямой полярности), то электроны под действием электрического поля начнут перемещаться от катода к аноду и через диод протечет ток. Если на диод подать напряжение обратной полярности, то электрическое поле будет пытаться перемещать электроны от анода к катоду. А поскольку анод не может излучать электроны, то и движения в этом направлении электронов не будет, и ток будет отсутствовать.
Чтобы получить усилительный прибор (триод) между катодом и анодом вводится дополнительный электрод – сетка. Она позволяет управлять количеством проходящих через нее электронов от катода к аноду, то есть управлять анодным током триода. Управление происходит электрическим полем создаваемым сеткой. При подаче на нее отрицательного напряжения ее электрическое поле отталкивает электроны обратно к катоду и препятствует их перемещению через сетку к аноду. При «нулевом» или положительном напряжении на сетке, ее электрическое поле не препятствует прохождению электронов к аноду и через триод протекает ток.
Где применяются радиолампы
Радиолампы распространены в быту гораздо шире, чем вы об этом думаете. И это не о тех людях, которые еще не выкинули старые ламповые телевизоры и радиоприемники. На сегодняшний день радиолампы есть почти в каждой квартире или доме. И находятся они в микроволновых печах. Называется такая радиолампа магнетроном. Магнетрон является автогенератором, то есть при подаче на него питания он самостоятельно генерирует, без помощи других радиоэлементов сверхвысокочастотные (СВЧ) электромагнитные колебания большой мощности. Которые затем, проникая вглубь продуктов питания, разогревают их изнутри.
Также используются магнетроны и в оборонке в передатчиках радиолокационных станций.
Так почему же используется магнетрон, а не транзисторы. Дело в том, что даже самый мощный транзистор не сможет обеспечить такую выходную мощность на сверхвысокой частоте, как магнетрон. Поэтому пришлось бы использовать большое количество выходных транзисторов, задающий генератор, СВЧ сумматор и другие радиоэлементы обвязки. Что сделало бы такой источник СВЧ энергии сложным, громоздким, дорогим и ненадежным. Диапазон СВЧ составляет от 3 до 30ГГц. Транзистор имеет небольшие размеры, питается низковольтным напряжением, рабочий ток его также невелик, поэтому потребляемая и соответственно выходная мощность СВЧ энергии такого каскада тоже невелика.
Напряжение питания магнетрона микроволновой печи в среднем составляет 4000В, ток потребления 0,3 А, отсюда мощность потребляемая им от сети составит 4000В х 0,3А=1200Вт. А мощность генерируемой им СВЧ энергии в среднем 800Вт.
А какой СВЧ транзистор способен потребить 1200Вт электрической энергии? Правильно, никакой, соответственно и мощность генерируемой им СВЧ энергии будет мала.
Ну а, например, напряжение питания магнетрона МИ-285 используемого в радиолокации составляет 50КВ, представляете, целых 50000В.
Магнетрон МИ-285 (импульсная мощность 1,2 МВт)
Дальше нужно продолжать про генерируемую им мощность? Продолжу, в импульсе (радиолокаторы работают в импульсном режиме) его выходная мощность составляет 1,2 МВт (1,2 миллион ватт). Какой транзистор повторит такое?
В оборонном секторе на самом деле используется достаточно большое количество мощнейших электровакуумных приборов СВЧ диапазона. И на сегодняшний день ни один транзистор и близко не стоял возле этих монструозных приборов.
Еще один из них – это клистрон. В отличие от магнетрона он не является автогенератором. Клистрон – это усилительный прибор, кроме выхода СВЧ энергии, он имеет также вход, на который подается усиливаемый СВЧ сигнал. Он также используется для работы в мощных передатчиках радиолокаторов.
Клистрон
В космосе и оборонке широко используются лампы бегущей волны (ЛБВ), это усилительный прибор, обладающий громадным коэффициентом усиления до сотен тысяч в широком диапазоне частот, и мизерными собственными шумами. Применяется он преимущественно в приемниках. Ни один транзистор не обладает такими характеристиками.
В настоящее время ЛБВ успешно применяются на спутниках различного назначения. Компания «Росэлектроника» в настоящее время по программе импортозамещения разрабатывает свои ЛБВ космического назначения взамен импортных. Ей для этого выделено 600,5 миллионов рублей.
Какие еще преимущества имеют радиолампы
Радиолампы устойчивы к электромагнитному импульсу (ЭМИ) и способны без последствий выдерживать кратковременные перегрузки, создаваемые им. Как это физически будет происходить в радиолампе? Под воздействием ЭМИ наводятся большие напряжения, которые способны пробивать пространство между электродами внутри радиолампы. В момент пробития лампа работать не будет, но после окончания ее работоспособность будет восстановлена. И ничего страшного, что при пробитии часть металла испарилась с электродов, и это частично нарушило вакуум. Через некоторое время вакуум восстановится. Для этого в лампах имеется специальное вещество (геттер), которое поглощает все молекулы, которые находятся в рабочем объеме радиолампы. И вакуум полностью восстанавливается.
А если пробой произойдет в транзисторе, это приведет к необратимому выходу его из строя. Поскольку его рабочий объем состоит из твердого материала (кремния, германия, и. т. д.), который меняет свои физические свойства необратимо.
Также радиолампы устойчивы к ионизирующему излучению, газа в них нет, ионизироваться нечему. А в транзисторах опять же произойдут необратимые разрушения твердого тела.