В настоящее время исследователи разработали новую превосходную аппаратную платформу для ускорителей искусственного интеллекта, использующую фотонные интегральные схемы на кремниевом чипе.
Технология совместной оптики (CPO) позволяет объединять фотонные интегральные схемы (PICs) с электронными интегральными схемами (EIC), такими как центральные и графические процессоры, на одной платформе. Эта продвинутая технология значительно повышает эффективность передачи данных в центрах обработки данных и высокопроизводительных вычислительных системах. Для работы CPO необходим лазерный источник, который может быть встроен в кремниевые фотонные чипы (интегрированные лазерные источники) или предоставляться извне.
Интегрированные лазерные источники обеспечивают плотную интеграцию, но поддержание их надежности может быть сложной задачей, что влияет на общую стабильность системы. В отличие от них, использование внешних лазерных источников (ELS) в CPO повышает надежность.
Одномодовые полимерные волноводы играют ключевую роль в PICs, передавая свет от внешнего лазера к PIC или распределяя оптические сигналы внутри системы. Они экономичны, механически гибки и хорошо совместимы с электрическими цепями, что делает их перспективными для использования в CPO с ELS.
Группа исследователей под руководством доктора Сатоши Суда из Национального института передовых промышленных наук и технологий Японии изучила стабильность и надежность одномодовых полимерных волноводов на стеклоэпоксидных подложках. Результаты, опубликованные в журнале Lightwave Technology, показывают, что эти волноводы обладают желаемыми характеристиками, что делает их многообещающим компонентом для будущих систем CPO.
Концепция (а) сверху и (б) в поперечном сечении "активной оптической подложки" на основе одномодового полимерного волновода для CPO следующего поколения с использованием ELS.
"Полимерные волноводы обладают значительным потенциалом для сложных систем CPO. Мы оценили основные оптические свойства одномодовых волноводов на стеклянной эпоксидной подложке," — говорит доктор Суда.
Команда изготовила волноводы длиной 11 мм с помощью прямой лазерной записи на стеклоэпоксидных подложках FR4. Волноводы имели четко контролируемые размеры сердцевины (9,0 мкм × 7,0 мкм), что подходит для стандартных одномодовых волокон. Они продемонстрировали низкие потери, зависящие от поляризации (PDL), и низкую дифференциальную групповую задержку (DGD), а также отличную однородность в восьми образцах.
Волноводы с низким PDL и DGD способствуют стабильной передаче сигнала в системах CPO, минимизируя искажения. Исследователи отметили постоянные размеры вносимых потерь и модового поля, что позволяет предположить, что они могут служить энергоэффективными оптическими межсоединениями для CPO.
Кроме того, волноводы на стеклоэпоксидных подложках демонстрируют желаемый коэффициент ослабления поляризации (PER), который отражает способность волноводов поддерживать определенную поляризацию передаваемых сигналов. Команда измерила PER на всех длинах волн в рамках стандарта CWDM4 (1271, 1291, 1311 и 1331 нм) и обнаружила высокие значения PER, превышающие 20 дБ, что соответствует спецификациям OIF для систем CPO на базе ELS.
Испытания волноводов на основе стекла и эпоксидной смолы в условиях высокой мощности показали их устойчивость к снижению энергопотребления даже после шести часов непрерывной работы, при этом проблемы с нагревом минимальны. ELS, использованный в экспериментах, обеспечивал стабильную работу в течение шести часов и был предоставлен компанией Furukawa Electric Co., Ltd.
"Эти результаты демонстрируют большой потенциал полимерных волноводов для практического применения в требовательных системах CPO, обеспечивая надежную основу для технологий оптической связи нового поколения с высокой плотностью и пропускной способностью," — заключает доктор Суда.