Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam

Топ прошлой недели

  • CharlotteLink CharlotteLink 1 пост
  • Syslikagronom Syslikagronom 7 постов
  • BydniKydrashki BydniKydrashki 7 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Новости Пикабу Помощь Кодекс Пикабу Реклама О компании
Команда Пикабу Награды Контакты О проекте Зал славы
Промокоды Скидки Работа Курсы Блоги
Купоны Biggeek Купоны AliExpress Купоны М.Видео Купоны YandexTravel Купоны Lamoda
Мобильное приложение

Данные

С этим тегом используют

Статистика Инфографика Негатив Россия Интересное IT Сравнение Все
926 постов сначала свежее
96
Koxae
Koxae
5 месяцев назад

Ответ на пост «Т-Банк и "Запрос данных"»⁠⁠5

Забавный момент: если бы не пост на пикабу, я бы даже не узнала об этом вымогательстве, поскольку вообще не смотрю в уведомления, ибо там всегда только бесполезная для меня реклама. Т-банк, вы ведь именно этого добивались, мусоря в уведомлениях, чтобы люди туда не заглядывали?

Т-Банк Мошенничество Обман Длиннопост Данные Персональные данные Обновление Запросы Банк Ответ на пост Текст Волна постов
20
39
FlatCat
FlatCat
5 месяцев назад

Ответ на пост «Т-Банк и "Запрос данных"»⁠⁠5

Начать стоит с того, что закон, на который ссылается Т-Банк, относится к юридическим лицам.

А вот, какой ответ мне дали в поддержке Т-Банка на вопрос что, собственно, происходит, и что им от меня нужно:


FlatCat, здравствуйте.

Понимаю, как важно разобраться в этом вопросе.

Ваши данные пока что не устарели, но в случае, если ваши данные станут не актуальными, мы сможем получить их автоматически и не беспокоить вас звонками с просьбой актуализировать данные.

Обновление персональных данных клиента необходимо для исполнения обязанностей, возложенных на АО «ТБанк» Федеральным законом от 7 августа 2001 г. № 115-ФЗ «О противодействии легализации (отмыванию) доходов, полученных преступным путем, и финансированию терроризма». Подпункт 3 пункта 1 статьи 7 указанного закона обязывает кредитные организации обновлять информацию о клиентах не реже 1 раза в год (1 раза в 3 года – для клиентов, которые отнесены к группе низкой степени (уровня) риска совершения подозрительных операций), а в случае возникновения сомнений в достоверности и точности ранее полученной информации – в течение 7 рабочих дней, следующих за днем возникновения этих сомнений.

Вы в праве отказаться.

При этом, в случае вашего согласия, если ваши данные станут не актуальными, мы сможем получить их автоматически и не беспокоить вас звонками с просьбой актуализировать данные.

Сообщение носит рекамендательно-информационный характер.


Жирным выделено мной.

Показать полностью
Т-Банк Мошенничество Обман Длиннопост Данные Персональные данные Обновление Запросы Банк Ответ на пост Текст Волна постов
6
6099
Tr1m3
Tr1m3
5 месяцев назад

Т-Банк и "Запрос данных"⁠⁠5

Пишет T-Банк

Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов

Обращаюсь в поддержку, чтобы уточнить, какие именно данные им требуются. Отвечают: паспорт, ИНН и СНИЛС. Нажимаю "обновить данные", и дальше начинается самое интересное...

Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов

Формирование финансовых и нефинансовых предложений...

Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов
Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов
Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов
Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов
Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов
Т-Банк и "Запрос данных" Т-Банк, Мошенничество, Обман, Длиннопост, Данные, Персональные данные, Обновление, Запросы, Банк, Скриншот, Жалоба, Волна постов

Осталось пароли и доступы к камерам в доме попросить.

Сразу отвечу тем, кто скажет, что можно снять галки и все.
1. Изначально это подается по другой причине
2. В техподдержке пишут, что нужны им - ИНН, паспорт, СНИЛС и всё
3. В цели обработке маркетинговые цели
4. И вообще, пусть вам всю жизнь подсовывают то, что вам не нужно, рассчитывая, что вы не заметите!

Показать полностью 8
[моё] Т-Банк Мошенничество Обман Длиннопост Данные Персональные данные Обновление Запросы Банк Скриншот Жалоба Волна постов
663
1
scutdusty
5 месяцев назад
Аналитика данных

Творожок Часть 4 Что случилось и что делать?⁠⁠

После того как данные загружены, причесаны и трансформированы можно приступать собственно к самой аналитике. Возвращаемся к творожкам.

Итак...

Я открываю холодильник и вижу, что там есть 3 творожка. А вчера их было 5. А позавчера 8. А в прошлый понедельник их вообще не было.

Посчитайте оборачиваемость творожков, стоимость товарного запаса, постройте линейный график присутствия творожков в холодосе, творожковый индекс инфляции. Делая все эти манипуляции мы отвечает на вопрос "что случилось?". Это называется дескриптивная аналитика. По-русски - описательная. В ней описываются произошедшие события. Они крутятся, вертятся, дробятся, аггрегируются и блядь хуй знает чё с ними ещё делают аналитики, которые застряли на этом этапе. Описательный анализ не требует интенсивной работы головного мозга, так как все формулы вычислений расписаны лет 100, а то и 200 назад. Просто подставляй цифры в формулы, рисуй графики, придумывай KPI и натужно их достигай. Исключение составляют разве что задачи кластеризации и классификации.

Но нужно понимать  почему то или иное событие произошло, почему в одном месте рекорд, а в другом все пошло по пизде? Почему сегодня есть творожки, а в прошлый понедельник их не было. Почему вчера их было 5, а сегодня всего 3? На подобные вопросы отвечает диагностическая аналитика и применяется охуенный, но в то же время один из самых сложных инструментов - факторный анализ. Здесь от аналитика помимо его знаний в области непосредственно аналитики требуется ещё и знание предметной области. И те аналитики, которые либо имели опыт в каком-то конкретном бизнесе или тесно общаются с этим бизнесом имеют большую эффективность. О чем это я? В прошлый понедельник закончились творожки, потому что в предыдущее воскресенье все деньги были спущены на поход в кино, чипсы и Кока-Колу, магазин был закрыт, творожки все разобрали, дома все заболели и сходить было некому, холодильник сломался и некуда их складывать, наступил ядерный апокалипсис. Для факторного анализа основываясь на данных из дескриптивного анализа соединяем графики нахождения творожков в холодосе, их цену, график получения зарплаты, график походов в кино, график закрытия магазина, график частоты отсутствия на полках магазина необходимого товара, график профилактических прививок от всех болезней, график регулярного технического обслуживания холодильника, ну и наконец расписание ядерных апокалипсисов. Вводим во все это хозяйство минимум две одинаковых временных шкалы. Теперь мы начинаем сравнивать показатели в разных временных периодах в разрезе разных факторов, которые могли повлиять на те или иные показатели выявляя закономерности и делая выводы.

Если задрочиться, то на этом этапе можно въебать ML-ку для поиска аномалий и/или выделения неочевидных факторов.

Ну и что дальше? Сколько творожков у меня будет завтра? На этот вопрос отвечает преддиктивная аналитика. Собрав все данные из дескриптивной и диагностической аналитики мы можем построить графики трендов, временные ряды, и прочую прогностическую херню. Здесь простор для задрачивания математики, статистики, ML-моделей и всей прочей ботанской ебалы, которую вы прогуливали в институте.

Самой последней наиболее дорогой по баблу, но самой милой сердцу любого начальника идет предписывающая аналитика. И если преддиктивная аналитика отвечает на вопрос "что будет если нихера не менять?", то предписывающая аналитика отвечает на вопрос "что будет если что-то все таки поменять?" и "что делать?". И подобные вопросы типа "Как, когда, в каком количестве нужно делать, чтобы не проебать все полимеры". Само собой она основывается на предыдущих трёх уровнях аналитики, типа в субботу нужно купить 12 творожков на сумму 768 рублей, потому что в запасе ещё 3 творожка, прогнозируемое потребление - 2.5 творожка в день, зарплата в пятницу, по субботам скидки, а в магазин в следующий раз мы пойдем в лучшем случае в четверг. Здесь аналитику придется смотреть на бизнес уже глазами руководителя.

Руководитель будет полагаться на предписывающую аналитику в принятии решений, но не руководствоваться ей, иначе он не руководитель, а обезьяна, потому что профессиональная чуйка (не учтенные в модели факторы) может дать лучшие результаты, чем самый лучший расчет.

Продолжение следует...

Показать полностью
[моё] Аналитика Программирование Мат Данные Анализ данных Большие данные Python Bi Длиннопост Текст
3
3
scutdusty
5 месяцев назад
Аналитика данных

Творожок Часть 3 Ты нормальный вообще?⁠⁠

Этот вопрос периодически мне задают. У нормальности есть разные критерии и формы. И, немного отодвинув в сторону тему творожков из Поста1 и Поста2 я вам расскажу, что такое нормальный.

Итак.

Знакомьтесь,

Андрей Васильевич - работает директором фирмы “Костромские дилдо”

Елена Афиногенова - жена Андрея Васильевича, домохозяйка

Виталий Тимофеевич - работает директором фирмы “Костромской лубрикат”.

Алевтина Сергеевна - жена Виталия Тимофеевича, работает секретарем в фирме “Костромские дилдо”.

Василий Петрович - техник в фирме “Костромской лубрикат”.

Василиса Рубиковна - курьер в компании “Костромской лубрикат”.

Елена Афиногенова -  немолодая женщина требующая от мужа выполнения супружеских обязанностей. По этой причине Андрей Васильевич вынужден поебывать ее в домашних условиях долгими костромскими вечерами. Но при этом ему намного приятнее поебывать также и Алевтину Сергеевну в своем уютном офисе.

Виталию Тимофеевичу изредка перепадает женской ласки от Алевтины Сергеевны.

Василиса Рубиковна недавно устроилась курьером, и мотается с документами между фирмами, разводя шашни с местным персоналом и периодически ебется в офисах то с Андреем Васильевичем, то с холостяком Василием Петровичем.

Ну а Василий Петрович периодически захаживает домой к ненасытной Елене Афиногеновне, пока ее муж снова "задерживается на совещании".

Все данные выше можно свести в табличку с данными о том, кто кого ебет.

Творожок Часть 3 Ты нормальный вообще? Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

С точки зрения реляционной базы данных перечисление через запятую или другой разделитель в одной строке - это полная залупа, так как чтобы вытащить данные о том, с кем ебется например Елена Афиногенова - нужно будет расшивать каждую ячейку в столбце. И это с любой точки зрения не нормально. Точнее не нормализовано. Поэтому избавляемся от запятых.

Творожок Часть 3 Ты нормальный вообще? Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Теперь те кто ебет и те кого ебут находятся в соответствии один к одному. Это называется первая нормальная форма.

В следующей таблице данных все акты соития по датам.

Творожок Часть 3 Ты нормальный вообще? Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

В этой таблице избыточная информация, потому что имена ебырей и названия фирм в которых они работают зависят от ключа ID, такая же хуйня и с именами блядей.

Поэтому для ебырей и блядей создаем отдельные таблички.

Творожок Часть 3 Ты нормальный вообще? Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Это называется вторая нормальная форма.

Однако, в табличке с ебырями у нас от ID зависит имя ебыря, а от него зависит название фирмы ебыря (по научному транзитивная зависимость). В третьей форме такой хуйни быть не должно. Поэтому создаем табличку с фирмами. Это будет третья форма. Рисовать впадлу и так вроде все понятно.

Есть еще Бойс-Кодд нормальная форма (та же третья форма, только более жесткая), где все зависимости должны быть от ключа.

Есть еще четвертая форма, где избавляются от многозначных зависимостей. Типа если Василий Петрович ебется с Василисой Рубиковна в офисе, а с Еленой Афиногеновной дома - то это нужно тоже разносить по разным таблицам.

Есть еще пятая нормальная форма, где если  Елена Афиногеновна ебется только дома, а Алевтина Сергеевна и дома и в офисе, то это тоже должно быть вынесено в отдельную таблицу кто где ебется.

Но это уже не так важно как первые три формы.

Вобщем есть две крайности. Первая - это невъебовая таблица где хранится вообще все, вторая - это куча таблиц атомизированных до ключ-значение. И то и другое хуево, потому что в первом случае хуй отмасштабируешь, а во втором заебешься обслуживать. Везде нужно искать золотую середину.

А вообще сильно связанные данные типа “Вася ебется с Леной - Лена ебется с Колей и все вместе они учатся в одном ПТУ” - лучше всего хранить в графовой базе. Но об этом как-нибудь в другой раз.

Продолжение следует…

P.S. Все персонажи вымышленные, все совпадения случайны, Кострома - охуенный город.

Показать полностью 4
[моё] Аналитика Программирование Мат Данные Анализ данных Большие данные Python Bi Длиннопост
0
6
scutdusty
6 месяцев назад
Аналитика данных

Творожок Часть 2 Я календарь переверну⁠⁠

Те кто прочитали предыдущий пост - молодцы, те кто не прочитал - вкратце расскажу что здесь происходит. Я собрал инфу обо всех своих покупках в магазинчике за год и делаю аналитику того, как я и моя дочь хаваем творожки.

Итак…

Еще маленько причесав данные, рассчитав цену из стоимости и количества, отделив перед этим единицы измерения от мер делаем первую визуализацию в виде графичка. В каком количестве я покупаю творожки по дням.

Творожок Часть 2 Я календарь переверну Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

8 августа я купил 13 творожков. Нихера себе, с запасиком. И не ходил после этого в магаз в магаз целых… хуй знает сколько дней. Надо щели сделать между столбиками,чтобы видеть дни, когда я не ходил в магазин. Для этого нужно разметить ось X всеми датами которые только возможны между первой и последней покупкой (а может и больше). И для этого в свою модель данных с покупками я щас въебу календарь.

Есть один секрет, как быстро сделать календарь для любой аналитической системы. Сейчас я вам его открою. Заходите в гугл и забиваете в строку поиска “Мастер календарь для /название вашей аналитической системы/”. После этого тыкаете во вторую, третью или максимум четвертую ссылку, пиздите оттуда код, вставляете его к себе, запускаете и Вуаля! Наш календарь готов! Осталось только соединить его с моделькой прислюнявив даты из календаря к датам покупочек.

Творожок Часть 2 Я календарь переверну Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Обратите внимание на названия полей в модельке. Так делают хорошие разрабы. Так делают хорошие аналитики. Так делаю я. Так не делают долбоебы, у которых потом поле “количество” хуй пойми откуда взялось - из продаж, наличия на складе или пиздюлей, которых он огребает за такой нейминг.

Особый писк - это автоматический программно-генерируемый файл календаря, который затем прислюнявливается ко всем аналитическим приложениям. В него при необходимости можно въебать курсы валют на каждый день, производственный календарь, график менструаций в бухгалтерии и прочее.

Творожок Часть 2 Я календарь переверну Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Выглядит конечно уебищно, но зато все видно.

Продолжение следует…

Показать полностью 2
[моё] Аналитика Программирование Мат Данные Анализ данных Большие данные Python Bi Длиннопост
0
8
scutdusty
6 месяцев назад
Аналитика данных

Творожок Часть 1 QA⁠⁠

Я год ждал пока кто-нибудь напишет в сообщество “Аналитика данных” пост про аналитику или про дата менеджмент. Хуй там валялся. Пара каких-то постов ни о чем. Придется самому писать.

Итак.

Речь пойдет о творожках… Почему о творожках, спросите вы. И я с удовольствием отвечу: потому что я и моя дочь едим их на завтрак и иногда в течении дня. Бывают ситуации когда открываешь холодильник, с вожделением протягиваешь руку к прохладной пластиковой баночке, а там хер. Нету ничего. Закончились творожки. Для того чтобы избежать подобной ситуации в будущем - ее нужно уметь прогнозировать.  А какой может быть прогноз без аналитики?

Творожки я покупаю в большом сетевом магазине, по традиции Пикабу назову его так:  начинается на "Пере" и заканчивается на "кресток". Особо пытливые умы думаю догадаются. Каждый раз когда я там пробиваю покупку на кассе, подсовываю скидочную карту, в надежде получить скидочки. В это время заботливый сервер сохраняет список моих покупок. Поэтому зайдя в личный кабинет магазинчика - я могу посмотреть когда, чего, сколько и за сколько деняк я все покупал.

Творожок Часть 1 QA Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Скопировав эти данные я получил сырой датасет.  Дата, че купил, сколько и за сколько.

Творожок Часть 1 QA Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

Питончиком причесываем данные и приводим в съедобный вид:

Творожок Часть 1 QA Аналитика, Программирование, Мат, Данные, Анализ данных, Большие данные, Python, Bi, Длиннопост

И первое что делает аналитик с сырыми данными - изучает их. И поэтому первое что мы разберём - это QA (качество) данных.

Данные проверяются по принципу “КОролевской СОбаке ТОчно ПОхуй на СВОю УНикальность”.

КО - корректность. Проверяем, что в колонке количество у нас числа, а не слово “хуй” например.

СО - согласованность. Если в сырых данных написано “творожок Блядисимо”, нехуй его сокращать или переименовывать, потому что если они попадут в разные таблицы или базы данных вы потом хер поймете один и тот же это творожок или разные.

ТО - точность. Если творожок стоит 63.99 это значит за два творожка я отвалю 127.98, а не 128 рублей. Ясно вам, Округлятели херовы?

ПО - полнота. Забегая вперед скажу, что на творожки за этот год я потратил 26 тысяч рубасов. Сам охуел если честно. Больше всего творожков пришлось на октябрь. Я бы не смог посчитать этого если в данных нет даты или названия продукта.

СВО - своевременность. Данные собрал с 1 декабря прошлого года до 1 декабря нынешнего. На следующий год пересчитаю за полный год. Будет своевременно. И красиво. 

УН - уникальность. Данные не должны дублироваться и чтобы не охуеть от двойных и тройных сумм в дашборде - создаем ключи и ID везде, где это возможно. Легче потом отследить от какой жопы те или другие ноги.

В любом случае в больших организациях за качество данных отвечает владелец бизнес-функции (начальник продаж, начальник закупок, начальник логистики и прочие шишки), а в очень больших - Data Quality Engineer. Поэтому если закупщики при создании карточки товара въебут килограммы туда где должны быть граммы и “хз” туда где должны быть сантиметры - то вместо кучи интересной информации бизнес-пользователи получат кучу говна. И это должна быть проблема бизнес-функции, а не аналитика, который по мнению бизнес-пользователей должен всю эту херню вылавливать и причесывать.

Продолжение следует…

P.S. Где тег "Творожок"?

Показать полностью 3
[моё] Аналитика Программирование Мат Данные Анализ данных Большие данные Python Bi Длиннопост
1
36
imctobitch
imctobitch
Норм автор
Серия I'm CTO, bitch
6 месяцев назад

Настоящий аналитик⁠⁠

Настоящий аналитик I`m CTO bitch, IT юмор, Юмор, Разработка, Найм, Аналитика, База данных, Данные, Память, Аналитик, Анализ данных, Восстановление данных, Резервное копирование, Вакансии, Рехаб, Скриншот

🤬👉️ Телеграм-канал

[моё] I`m CTO bitch IT юмор Юмор Разработка Найм Аналитика База данных Данные Память Аналитик Анализ данных Восстановление данных Резервное копирование Вакансии Рехаб Скриншот
3
Посты не найдены
О Нас
О Пикабу
Контакты
Реклама
Сообщить об ошибке
Сообщить о нарушении законодательства
Отзывы и предложения
Новости Пикабу
RSS
Информация
Помощь
Кодекс Пикабу
Награды
Команда Пикабу
Бан-лист
Конфиденциальность
Правила соцсети
О рекомендациях
Наши проекты
Блоги
Работа
Промокоды
Игры
Скидки
Курсы
Зал славы
Mobile
Мобильное приложение
Партнёры
Промокоды Biggeek
Промокоды Маркет Деливери
Промокоды Яндекс Путешествия
Промокоды М.Видео
Промокоды в Ленте Онлайн
Промокоды Тефаль
Промокоды Сбермаркет
Промокоды Спортмастер
Постила
Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии