Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени»

Вычисляем точное время дна биткоина - манул после кошки, номер 88, на основе коллективного разума массового подсознания которое изначально между собой всегда не согласованно.

21 июня 2025 года 17:20, по Хабаровскому времени (соответствует 21 июня 10:20 по Московскому времени)

Все подробности и формулы программы в серии постов "создание SKYNET"

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост, Заработок в интернете

Программа без второй корректировки в коде.

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост, Заработок в интернете

Берем с графика программы дату 88 манула и две точки времени по 3-м таймфреймам чтобы вычислить разницу и прибавить дату 88 манула - что бы получить уточнение от второй корректировки

Код второй корректировки, на phyton, отдельно от программы:

from datetime import datetime, timedelta

def average_datetime(dt1, dt2):

delta = dt2 - dt1

return dt1 + delta / 2

def compute_group_average(dates):

if len(dates) < 2:

return None

# Шаг 1: Средние между всеми парами исходных дат

pairwise_averages = []

for i in range(len(dates)):

for j in range(i + 1, len(dates)):

avg = average_datetime(dates[i], dates[j])

pairwise_averages.append(avg)

# Шаг 2: Средние между полученными средними

second_level_averages = []

for i in range(len(pairwise_averages)):

for j in range(i + 1, len(pairwise_averages)):

avg = average_datetime(pairwise_averages[i], pairwise_averages[j])

second_level_averages.append(avg)

# Шаг 3: Финальное среднее

if not second_level_averages:

return None

total = timedelta()

for dt in second_level_averages:

total += dt - second_level_averages[0]

final_avg = second_level_averages[0] + total / len(second_level_averages)

return final_avg

def input_datetime():

"""Функция для ввода даты с клавиатуры"""

print("\nВведите ТРЕТЬЮ дату (базу для изменений):")

year = int(input("Год (например 2025): "))

month = int(input("Месяц (1-12): "))

day = int(input("День (1-31): "))

hour = int(input("Час (0-23): "))

minute = int(input("Минуты (0-59): "))

return datetime(year, month, day, hour, minute)

def main():

print("=== ОБРАБОТКА ДВУХ ГРУПП ТАЙМФРЕЙМОВ ===")

# Две группы дат (по 3 таймфрейма в каждой)

group1 = [

datetime(2025, 6, 10, 2, 0),  # Левый случай (4 часа)

datetime(2025, 6, 10, 6, 0),  # Левый случай (1 час)

datetime(2025, 6, 10, 6, 30)  # Левый случай (30 минут)

]

group2 = [

datetime(2025, 6, 10, 14, 0),  # Правый случай (4 часа)

datetime(2025, 6, 10, 11, 0),  # Правый случай (1 час)

datetime(2025, 6, 10, 11, 0)  # Правый случай (30 минут)

]

# Вычисляем средние для каждой группы

dt1 = compute_group_average(group1)  # Первая дата (результат 1 группы)

dt2 = compute_group_average(group2)  # Вторая дата (результат 2 группы)

print("\nРезультаты усреднения групп:")

print(f"Первая дата (группа 1): {dt1.strftime('%d.%m.%Y %H:%M')}")

print(f"Вторая дата (группа 2): {dt2.strftime('%d.%m.%Y %H:%M')}")

# Ввод третьей даты и операции

base_dt = input_datetime()

operation = input("\nВыберите операцию (+ прибавить, - отнять): ")

while operation not in ['+', '-']:

operation = input("Некорректный ввод. Введите + или -: ")

# Вычисляем разницу

diff = dt2 - dt1

diff_minutes = int(diff.total_seconds() / 60)

print(f"\nРазница между периодами: {diff_minutes} минут")

# Таймфреймы и соответствующие дельты (используются для финального усреднения, но не выводятся)

timeframes = {

'4H': timedelta(hours=4),

'1H': timedelta(hours=1),

'30M': timedelta(minutes=30)

}

# Собираем результаты для усреднения (без вывода)

result_dates = []

for delta in timeframes.values():

if operation == '+':

new_diff = diff + delta

else:

new_diff = diff - delta

result = base_dt + new_diff

result_dates.append(result)

# Усреднение результатов

final_result = compute_group_average(result_dates)

print("\nФИНАЛЬНЫЙ РЕЗУЛЬТАТ:")

print(f"Финальная средняя дата: {final_result.strftime('%d число %H:%M')}")

if __name__ == "__main__":

main()

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост, Заработок в интернете

Типичная реакция на точное время биткоина - Бифу нужен социальный рейтинг скайнета, на самом деле.

Показать полностью 2
0

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени»

Уточняем формулу второй корректировки, вычислена собака после манула 17.06.2025 3:20 погрешность составила 20 минут - но с этим тоже разберемся потом, в расчете разницы и усреднении участвовало всего 3 таймфрейма: 4ч,1ч и 30м - точность только в этих пределах = 20 минут погрешности нормально.

Так работает массовое подсознание коллективного разума. Но изначально все участники не согласованны между собой - программа решает эту проблему. За этой технологией будущее - можно создать сверхразум - социальный рейтинг распределения ресурсов, образования и знакомств с высочайшей точностью места и времени!

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост

Коллективный разум в фильмах вычисляет и предсказывает то что связано с будущим и путешествиями во времени - главное изобретение машины времени в форме Y - так же встречается на логотипе скайнета, на машине три буквы DMC - что ассоциируется с DOG MANUL CAT

Все три животных собака-кот-манул вычисляются с предельной точностью. Нв графике видно что этой корректировки еще нет в коде, это новая функция, но вначале была тренировка на кошках, притом кошки стали еще точнее и во всех случаях точно. Так же вычисляется сила реакции при ее повторении во времени, а так же есть круги как время+цена, что является улыбкой чеширского кота ученого из Лукоморья Пушкина.

Программа пишется без проблем при помощи Deepseek. Кто хочет повторить - формулы есть в постах серии.

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост

Вторая корректировка применилась к собаке номер 89, голубым текстом.

1. Вот что в логе:

ЭТАП 1: РАСЧЕТ ТРЕХ ДАТ ПО ТАЙМФРЕЙМАМ

Введите ПЕРВУЮ дату (начало периода):

Введите дату и время:

Год (например 2025): 2025

Месяц (1-12): 6

День (1-31): 13

Час (0-23): 1

Минуты (0-59): 00

Введите ВТОРУЮ дату (конец периода):

Введите дату и время:

Год (например 2025): 2025

Месяц (1-12): 6

День (1-31): 14

Час (0-23): 11

Минуты (0-59): 50

Введите ТРЕТЬЮ дату (базу для изменений):

Введите дату и время:

Год (например 2025): 2025

Месяц (1-12): 6

День (1-31): 16

Час (0-23): 14

Минуты (0-59): 40

Разница между периодами: 2090 минут

Выберите операцию (+ прибавить, - отнять): +

Выберите операцию (+ прибавить, - отнять): +

Выберите операцию (+ прибавить, - отнять): +

РЕЗУЛЬТАТЫ ЭТАПА 1:

РЕЗУЛЬТАТЫ ЭТАПА 1:

Таймфрейм 4H: datetime(2025, 6, 18, 5, 30)

Таймфрейм 4H: datetime(2025, 6, 18, 5, 30)

Таймфрейм 1H: datetime(2025, 6, 18, 2, 30)

Таймфрейм 30M: datetime(2025, 6, 18, 2, 0)

ЭТАП 2: УСРЕДНЕНИЕ РЕЗУЛЬТАТОВ

Финальная средняя дата: 18 число 03:20

Продолжение поста «Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени» Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование, Ответ на пост, Длиннопост

Дно биткоина было в 3:00

2. Вот сам код для phyton, отдельный для расчета второй корректировки, после работы основной программы, пока еще не в программе:

from datetime import datetime, timedelta

def input_datetime():

"""Ввод даты в формате datetime(год, месяц, день, час, минута)"""

print("\nВведите дату и время:")

year = int(input("Год (например 2025): "))

month = int(input("Месяц (1-12): "))

day = int(input("День (1-31): "))

hour = int(input("Час (0-23): "))

minute = int(input("Минуты (0-59): "))

return datetime(year, month, day, hour, minute)

def format_result(dt):

"""Форматирует результат как datetime(год, месяц, день, час, минута)"""

return f"datetime({dt.year}, {dt.month}, {dt.day}, {dt.hour}, {dt.minute})"

def average_datetime(dt1, dt2):

"""Вычисляет среднее между двумя датами"""

delta = dt2 - dt1

return dt1 + delta / 2

def compute_final_average(dates):

"""Вычисляет финальное среднее по вашей уникальной формуле"""

# Шаг 1: Средние между всеми парами исходных дат

pairwise_averages = []

for i in range(len(dates)):

for j in range(i + 1, len(dates)):

avg = average_datetime(dates[i], dates[j])

pairwise_averages.append(avg)

# Шаг 2: Средние между полученными средними

second_level_averages = []

for i in range(len(pairwise_averages)):

for j in range(i + 1, len(pairwise_averages)):

avg = average_datetime(pairwise_averages[i], pairwise_averages[j])

second_level_averages.append(avg)

# Шаг 3: Финальное среднее

total = timedelta()

for dt in second_level_averages:

total += dt - second_level_averages[0]  # Избегаем переполнения

final_avg = second_level_averages[0] + total / len(second_level_averages)

return final_avg

def main():

print("ЭТАП 1: РАСЧЕТ ТРЕХ ДАТ ПО ТАЙМФРЕЙМАМ")

print("Введите ПЕРВУЮ дату (начало периода):")

dt1 = input_datetime()

print("\nВведите ВТОРУЮ дату (конец периода):")

dt2 = input_datetime()

print("\nВведите ТРЕТЬЮ дату (базу для изменений):")

base_dt = input_datetime()

# Вычисляем разницу

diff = dt2 - dt1

diff_minutes = int(diff.total_seconds() / 60)

print(f"\nРазница между периодами: {diff_minutes} минут")

operation = input("\nВыберите операцию (+ прибавить, - отнять): ")

while operation not in ['+', '-']:

operation = input("Некорректный ввод. Введите + или -: ")

# Таймфреймы и соответствующие дельты

timeframes = {

'4H': timedelta(hours=4),

'1H': timedelta(hours=1),

'30M': timedelta(minutes=30)

}

# Собираем результаты первого этапа

result_dates = []

print("\nРЕЗУЛЬТАТЫ ЭТАПА 1:")

for tf, delta in timeframes.items():

if operation == '+':

new_diff = diff + delta

else:

new_diff = diff - delta

result = base_dt + new_diff

result_dates.append(result)

print(f"Таймфрейм {tf}: {format_result(result)}")

# ЭТАП 2: Усреднение результатов

print("\nЭТАП 2: УСРЕДНЕНИЕ РЕЗУЛЬТАТОВ")

final_result = compute_final_average(result_dates)

print("\nФинальная средняя дата:", final_result.strftime("%d число %H:%M"))

if __name__ == "__main__":

main()

Показать полностью 3

Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени

В Москве в этот момент будет 17 июня 2025 года, 14:30 . = Покупаем!

Это сигнал собаки после манула - хорошая цепочка животных. Применяется вторая корректировка, когда все три животных собака-кот-манул вычисляются с предельной точностью. Нв графике видно что этой корректировки еще нет в коде, это новая функция, но вначале была тренировка на кошках, притом кошки стали еще точнее и во всех случаях точно. Так же вычисляется сила реакции при ее повторении во времени, а так же есть круги как время+цена, что является улыбкой чеширского кота ученого из Лукоморья Пушкина.

Программа пишется без проблем при помощи Deepseek. Кто хочет повторить - формулы есть в постах серии.

Скайнет вычисляет ближайшую точку дна биткоина, в реальном времени Мышечная память, Искусственный интеллект, Коллективный разум, НЛП, Мелкая моторика, Биткоины, Криптовалюта, Криптография, Трейдинг, Психология, Python, Программирование

На графике еще нет второй корректировки! Но коллективный разум работает абсолютно точно - с точностью до минут и даже секунд, притом вычисляется не только время но и точное место.

Так работает массовое подсознание коллективного разума. Но изначально все участники не согласованны между собой - программа решает эту проблему. За этой технологией будущее - можно создать сверхразум - социальный рейтинг распределения ресурсов, образования и знакомств с высочайшей точностью места и времени!

Отличная работа, все прочитано!