hegny

hegny

не пью
Пикабушник
Дата рождения: 23 мая
32К рейтинг 1473 подписчика 162 подписки 23 поста 21 в горячем
Награды:
более 1000 подписчиков5 лет на Пикабу
239

Как шуруповёртом ускоритель починить (Часть 3)

Кусочек абразива в электронный микроскоп:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Но обо всём по порядку. Напомню, что мы затеяли ремонт сверхпроводящих электронных пушек для ускорителя-рекуператора. В первой части можно узнать, зачем и для чего это всё затевалось. Во второй части уже более конкретно описан анализ обнаруженных дефектов. Там же делается вывод о том, что дефекты придётся удалять механически, т.е. сошлифовывать с применением абразивов.

Здесь я позволю себе — просто 30 секунд или одну минуту — маленькую справку дать о том, как происходит абразивная обработка поверхности. Обычно абразив представляет собой твердый материал в виде небольших частичек неправильной формы с острыми краями. Как правило, его изготавливают в виде довольно крупных кристаллов, которые затем "разламывают" на фрагменты и сортируют по размеру. Вот, к примеру, изображение частички карбида кремния класса (размера) Р220, знакомого многим по обычной наждачной бумаге.

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

По центру схематически показано, каким образом частица "используется" в инструменте. Стрелка указывает на точку контакта с поверхностью обрабатываемого материала. В процессе абразивной обработки край частички вдавливается в поверхность детали и перемещается вдоль неё. Глубина "впечатывания" составляет лишь около 5% от размера зерна абразива. Т.е. для приведенного примера с грейтом P220 (размер частицы около 68 мкм) глубина "борозды" составляет около 3-4 мкм. При этом лишь часть материала удаляется абразивом. В основном материал пластично деформируется и "выпирает" по краям (правый рисунок), а не удаляется с обрабатываемой поверхности. Т.е. абразив "вспахивает" поверхность.

Режим работы абразивной частички ("вспашка" или резание) зависит от угла атаки:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Резка материала будет происходить при угле атаки выше определенного критического значения. На правой картинке показано распределение углов атаки для средней абразивной частицы. Из графика ясно, что абразив в основном "вспахивает" поверхность, а не режет её.

Толковому читателю очевидно, что абразивную обработку можно разделить на два типа: когда абразив закреплён (например, зацементирован в брусок или приклеен к поверхности инструмента) и когда абразив не закреплён (т.е. свободно перемещается между обрабатываемой поверхностью и инструментом). В первом случае (в английском называется two-body abrasion) абразив оставляет длинные борозды (по сравнению с собственным размером) и может работать в трёх различных режимах, в зависимости от твердости детали, твердости абразива и усилия прижима:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Слева направо: резание (стальная игла по бронзе), формирование клина (стальная игла по стали), вспашка (стальная игла по бронзе).

В случае же незакреплённого абразива (в английском three-body abrasion) его частички не зафиксированы и "катятся" между поверхностью и прижимающим инструментом. При этом острый угол абразива впивается в поверхность, сама частичка перекатывается и впивается другим углом. В процессе в поверхности образуется не царапина, а полоска отпечатков. В таком режиме не происходит резания материала (фото a и b):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

На нижних фотографиях (c и d) видны результаты смешанного режима: когда свободные частицы абразива застревают в пластичной поверхности инструмента и начинают работать, как закрепленный абразив.

Кроме того, частички абразива могут крошиться на более мелкие фрагменты, и эти самые фрагменты могут впечатываться в поверхность и оставаться там даже после ультразвуковой мойки:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

На картинке - изображение поверхности ниобия с включённой частицей полировочного материала. Слева - изображение в электронный микроскоп. Справа - результат EDX (или EDS, кому как нравится) анализа в том же микроскопе. По-русски это звучит страшно: энергодисперсионная рентгеновская спектроскопия. Но её принцип очень простой: в электронном микроскопе образец облучается пучком ускоренных электронов (до нескольких десятков кЭв, в вакууме, естественно). При этом существует несколько вариантов взаимодействия этих электронов с веществом.

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

"Обычным" режимом работы является использование вторичных электронов (SE - Secondary Electron), которые выбиваются из внешних электронных оболочек атома при неупругом рассеянии пучка ускоренных электронов (правая верхняя картинка). То есть ускоренный пучок первичных электронов, сфокусированный в точку на образце, выбивает из этой точки вторичные электроны. Они довольно медленные - всего десятки электрон-вольт (в тысячу раз меньше, чем в ускоренном пучке). Эти вторичные электроны улавливаются детектором (например, обычным сцинтиллятором с фотоэлектронным умножителем (ФЭУ)) и мы получаем один пиксель изображения. Затем мы с помощью линз направляем ускоренный пучок электронов в соседнюю точку образца и получаем следующий пиксель изображения. Просканировав целую область, мы получим привычное нам изображение. Собственно, поэтому микроскоп и называется Сканирующий Электронный Микроскоп (Scanning Electron Microscope) - СЭМ (SEM). Иногда еще говорят Растровый Электронный Микроскоп - РЭМ (REM). Поскольку детектор на ФЭУ выдает только амплитуду сигнала (яркость пикселя), то изображение получается монохромным (чёрно-белым). На картинке ниже два SEM изображения во вторичных электронах поверхности ниобия после полировки. Внизу изображений дана информация о режиме работы микроскопа:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

SE - изображение во вторичных электронах (secondary electrons - именно тот режим, который мы разобрали);
MAG:320x - увеличение 320 раз;
HV: 25,0 kV - ускоряющее высокое напряжение (High Voltage) 25 киловольт. Т.е. энергия ускоренных электронов 25 кЭв;
WD: 18,0 mm - Рабочее расстояние (Working Distance) 18,0 мм - это особенность настройки фокусирующих линз.
Ну и в конце показана измерительная шкала: отрезок равен 50 мкм.

Если кто-то публикует СЭМ изображение без такой строки с информацией - можете считать, что он их либо украл, либо дорисовал, либо что-то скрывает. В хороших научных работах принято оставлять эту информацию прямо на изображениях. Бывает, что однотипных изображений очень много, тогда строку на части из них могут обрезать для экономии места.

Вернёмся к нашему пучку ускоренных электронов в микроскопе. Он может выбить электрон не с внешней электронной оболочки атома исследуемого образца, а с какой-нибудь из нижних (стрелки 1 и 2 на левой картинке):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Отсутствие электрона на внутренней электронной оболочке не проходит незамеченным - эти места самые выгодные энергетически. На вакантное место сразу же "перепрыгнет" один из электронов с внешних оболочек (кто первый успеет) - стрелка 3 на картинке. При этом излишек его энергии улетит прочь в виде фотона. Этот фотон улавливается специальным детектором, который измеряет его энергию. Дело в том, что разница в энергии между внутренней и внешней (в любом сочетании) электронной оболочкой своя для каждого химического элемента. Определив энергию фотона мы можем точно назвать, в атом какого вещества попал ускоренный пучок электронов. На картинке справа показан спектр фотонов, принятый детектором. Над пиками написаны химические элементы и тип электронного перехода (К альфа, К бета, L альфа) - из левой картинки ясно, что это за переходы. Энергия этих фотонов лежит в рентгеновской области, поэтому такой анализ называется энергодисперсионной рентгеновской спектроскопией (EDX). Она позволяет каждому пикселю исходного изображения приписать химический состав. Как правило, на черно-белое изображение накладывают цвета, показывающие наличие выбранного элемента. На самой первой картинке в этом посте показаны шесть элементов. Ниже показаны частички оксида алюминия, оставшиеся в поверхности ниобия после полировки:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Кроме этого можно еще улавливать обратно рассеянный электроны (BSE - Backscattered electrons). Они несут информацию о заряде ядра элемента. Но об этом мы поговорим в другой раз (с красивыми картинками нитридов ниобия), а пока вернемся к полировке.

Очевидное решение для удаления впечатанных в поверхность частиц - полировать дальше, используя более мелкий абразив. При этом глубина нового этапа полировки должна быть достаточной для удаления включений. Обычно это значительно больше, чем нужно для того, чтобы просто сгладить царапины от грубой полировки.

С удалением материала мы немного разобрались, но у абразивной обработки есть еще одна важная для нас особенность. Дело в том, что наша пушка-резонатор - сверхпроводящая. Она сделана из очень-очень чистого кристаллического ниобия. Кристалличность в данном случае играет очень важную роль, поскольку электроны объединены в куперовские пары исключительно кристаллической решеткой (я как-нибудь напишу отдельный пост про это). Любые дефекты в кристалле приводят к существенному снижению сверхпроводящих свойств. Именно по этой причине после изготовления пушки (штамповки, токарной обработки, сварки) она проходит высокотемпературный вакуумный отжиг для рекристаллизации ниобия и химическое травление для удаления поврежденного приповерхностного слоя.

Так вот, абразивная обработка как раз и создает поврежденный приповерхностный слой. Механизм его образования выглядит примерно так:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Возле кромки абразива находится зона сдвиговых напряжений. При этом ниже поверхности образуется зона пластической деформации. Напряжение в этом слое максимальное у поверхности и снижается с глубиной (правая картинка). Глубина слоя сдвиговых деформаций примерна равна удвоенной глубине царапины, оставленной абразивом. Глубина же слоя пластической деформации может достигать десятков микрометров. На толщину этого слоя влияет сила прижима абразива, а вот скорость его движения совершенно не влияет. Увидеть этот слой не так уж сложно. Ниже приведены микрофотографии шлифов образцов ниобия:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

На первой картинке показан исходные поликристаллический отожженный ниобий. Видны границы кристаллических зерен. На трёх остальных изображениях показаны срезы образцов, отполированных до зеркального блеска, но с разной силой прижима абразива. По нарастающей от второй картинки к четвертой. Вы легко заметите, что возле поверхности образуется слой "раздавленного" кристалла. У всех образцов, кроме исходного, будут очень серьезные проблемы со сверхпроводимостью. Хотя поверхность выглядит идеально зеркальной. А вот так выглядит результат правильно подобранного давления при полировке:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Поскольку ниобий очень мягкий (особенно монокристаллический, т.к. твердость металлов обратно зависит от размера зёрен), то на нем легко наблюдать сдвиговые деформации при механической полировке:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

В данном случае в поверхности было просверлено глухое отверстие, и мы видим его края после полировки образца. Направление полировки указано стрелкой. Поверхность зеркальная - на картинке слева видны кристаллические зёрна (ниже стрелки). Ниже показано сечение такого "навеса":

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Казалось бы, мы наконец разобрались с тем, как работает полировка, и даже подобрали правильный режим, чтобы не образовывался слой деформированных кристаллов под поверхностью (на самом деле он будет в любом случае, но мы можем его минимизировать, и удалить небольшим химическим травлением). Но есть еще одна проблема, связанная с работой резонатора при криогенных температурах.

Для начала бегло взглянем на фазовую диаграмму железо-углерод ниобий-водород (запоминать её не нужно):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

По вертикали показана температура (слева - в градусах Цельсия, справа - она же в кельвинах). По горизонтали - содержание водорода в ниобии. На нижней шкале - в атомных процентах (сколько атомов водорода приходится на каждый атом ниобия, в процентах). На верхней шкале - в весовых процентах. Они сильно отличаются от атомных, так как водород - это просто протон, а вот ядро атома ниобия состоит из 41 протона и 52 нейтронов, т.е. примерно в 93 раза тяжелее ядра водорода (можете ради интереса поискать ниобий в таблице Менделеева). Бывают еще объёмные проценты (отношение объёмов веществ) - всем известные об.% (vol.% от volume), которые любители спиртного неверно называют "оборотами". Но объемные проценты обычно используют для жидкостей. На фазовой диаграмме нас интересует нижняя левая часть с температурами ниже 200К (-75 С) и концентрациями от 0 до 30 ат. %. Там есть несколько областей с разными греческими буквами - это фазы гидридов ниобия.

Дело в том, что сам чистый ниобий имеет так называемую кубическую объемноцентрированную кристаллическую решетку - атомы ниобия находятся в вершинах куба, плюс еще один в самом его центре (показано на первой картинке):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Так вот, если в ниобий добавить водород, то он (водород) может занять разные места в этом самом кубике между атомами ниобия. При низких концентрациях и примерно комнатной температуре водород в ниобии (и вообще в металлах) очень мобилен - он очень быстро двигается внутри кристаллической решетки (реально очень быстро - со скоростью диффузии веществ в теплой воде). Мы ведь помним, что ядро водорода - это просто протон. Он очень маленький и для него не составляет проблем протиснутся между атомами ниобия. На второй картинке пустыми кружками с цифрами показаны места, которые водород может занимать в кристалле ниобия (водород, всё-таки задерживается там на какое-то время, а не всё время скачет по всему объему материала). Если концентрацию водорода повысить (или понизить температуру), то мобильность водорода снижается, и он предпочитает уже не так много перемещаться, а осесть и остепениться. При этом меняется форма ниобиевой решетки - ниобиевым атомам приходится немного подвинуться и они уже не формируют идеальный куб. На правой картинке показана орторомбическая решетка бета-гидрида ниобия (степень "ромбичности" преувеличена для наглядности). При этом объем такого элементарного кристалла увеличивается примерно на 12% относительно исходного кубика.

Тут и кроется проблема: при охлаждении насыщенного водородом ниобия внутри кристалла начинают появляться островки с орторомбической решеткой, да еще и большего объема. При этом кристалл вокруг просто разрывается. Поскольку водород всё еще может двигаться (а он довольно мобилен до температур, выше 80-100К), то он при перемещении с удовольствием задерживается в местах порванной кристаллической решетки (он предпочитает дефекты решетки) и там тоже образуются гидриды с орторомбической решеткой. Получается, что изначально небольшой островок гидрида начинает постепенно расти. Это можно увидеть даже на поверхности ниобия в микроскоп:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

На картинке показаны изображения, полученные в электронный сканирующий микроскоп. Концентрация водорода в ниобии составляла 1,15 ат.%. Образец слева охлаждали медленно (менее трех градусов в минуту), а справа - быстро.

Хитрость в том, что если материал нагреть до комнатной температуры, то гидридная фаза "исчезнет" - водород снова разбежится по всему материалу, а ниобий вернется к кубической решетке. Только все разрывы решетки не затянутся, она так и останется "рваной".

И вы меня спросите: "а при чем здесь вообще водород?". А при том, что при полировке мы используем водные растворы различных поверхностно-активных веществ (так по-умному можно назвать даже обычное мыло) для удаления продуктов полировки, предотвращения их слипания и для охлаждения. А вода содержит ионы водорода: все ведь в школе проходили, что такое pH, диссоциация и т.д.? Сам по себе ниобий надежно защищен тонким (3-4 нанометра) слоем пентоксида ниобия Nb2O5 и вообще ни с чем не реагирует, кроме плавиковой кислоты. Но во время абразивной обработки этот поверхностный слой разрушается (срезается, раздавливается, деформируется), и металлический ниобий контактирует с водой (мы ведь не на сухую шлифуем). И водород из воды с огромным удовольствием проникает в решетку ниобия.

Проверить это очень просто. Полируем кусок ниобия, смотрим на него в микроскоп. Лучше всего найти какую-нибудь трещину или царапину (см. фото слева):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

Затем закидываем образец в криокулер, охлаждаем его до 10К, отключаем охлаждение и оставляем на сутки медленно нагреваться. Для роста гидридов лучше всего подходит температура между 100К и 150К - там подвижность водорода еще довольно высока, чтобы не ждать неделю. Потом достаем уже тёплый образец: все гидриды пропали, но порванная на их месте решетка осталась. И смотрим в микроскоп на то же самое место (вторая картинка) - там видны "следы" гидридов - раскуроченная поверхность вдоль исходной царапины. На самом деле такое же происходит не только на поверхности, но и внутри в объеме. Гидриды растут по всему объему, но больше всего их возле дефектов решетки - царапин, трещин и т.д.

Как я выше писал - любое повреждение кристаллической решетки сказывается на сверхпроводящих свойствах. "Заражение" сверхпроводящих резонаторов водородом называется Q-disease - буквально, Q-болезнь. В данном случае буква Q используется для обозначения добротности резонатора. Ниже приведен график с типовыми проблемами сверхпроводящих резонаторов:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

По вертикали показана собственная добротность. По горизонтали - напряженность электрического поля. Хороший резонатор показан зелёным пунктиром. Черным на графике показана та самая "водородная Q-болезнь". Очевидно, что резонатор с такой проблемой к использованию непригоден.

Как я выше писал, при производстве резонаторов их отжигают в вакуумных печах (фото не моё):

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

При температуре около 800С из ниобия улетучивается весь водород, а сам ниобий частично рекристаллизуется - небольшие дефекты кристаллической решетки исправляются, так как атомы ниобия начинают активнее шевелиться.

В нашем конкретном случае изделие (пушка-резонатор) уже имеет приваренный кожух с сильфонами (см. фото ниже), и греть всё это в печи до 800С вообще не вариант (точнее, вариант, но очень сложный, и мы всячески пытались его избежать). Кроме того, как я описывал в предыдущей части, у нас сильно ограничена возможность по химическому травлению после механической полировки - максимум 20 мкм. А совсем без химии, как вы поняли из сегодняшнего поста, не получится.

Вот они, две сверхпроводящие пушки. Обе дефективные. Ждут, пока я придумаю, как их вернуть к жизни:

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

А вот и клистрон (СВЧ усилитель) для них на 270 кВт. Тоже ждёт.

Как шуруповёртом ускоритель починить (Часть 3) Физика, Наука, Эксперимент, Научпоп, Ускоритель, Электроны, Микроскоп, Электронный микроскоп, Сверхпроводники, Ниобий, Абразив, Шлифовка, Кристаллы, Фаза, Атом, Ученые, Длиннопост

В целом схема ремонта вырисовалась следующая:

  1. Полируем дефект локально (т.е. только сам дефект и небольшую зону вокруг него, чтобы не было ступеньки или выемки). При этом используем минимально необходимое давление. Полировку ведём в три этапа с абразивом разной зернистости (постепенно уменьшая). Крупный абразив необходим, чтобы удалить дефект за адекватное время (не было желания заниматься полировкой несколько недель). Более мелкий абразив - для уменьшения шероховатости, удаления остатков крупного абразива и удаления деформированного слоя. Водные лубриканты не используем для того, чтобы избежать наводораживания материала. Полировку ведём до зеркального состояния поверхности.

  2. Проводим ультразвуковую отмывку, чтобы избавиться от возможных включений абразива.

  3. Проводим минимально возможное химическое травление. Целью было уложиться в 10 мкм удаленного слоя. При этом травление идет по всей внутренней поверхности резонатора, не только вокруг дефекта, что приводит к увеличению его объема и уменьшению резонансной частоты на 10кГц на каждый удалённый микрометр.

  4. Мойка водой под высоким давлением и криогенное тестирование резонатора.

  5. Если характеристики ниже требуемых, повторяем химическое травление, пока они не восстановятся или пока не упрёмся в предел по резонансной частоте.

В этом посте я уже выбрал лимит на картинки, поэтому шуруповёрт появится в следующей части, обещаю.

В этот раз вы немного познакомились с теорией абразивной обработки, и вам точно будет о чём поговорить со знакомыми технологами в курилке. А после упоминаний о фазовых диаграммах и особенностях поведения водорода в металлах они вас сильно зауважают и выберут вожаком будут приходить к вам за советом. Кроме этого вы можете буквально на пальцах рассказать первому встречному, как работает электронный микроскоп. Да не просто в "обычном" режиме, но и в режиме анализа элементного состава. Ну и вас теперь точно не запугать словами "объемноцентрированная орторомбическая кристаллическая решетка".

Показать полностью 22
681

Как шуруповёртом ускоритель починить (Часть 2)

В прошлой части мы остановились на том, что фотокатод после нескольких тестов уронили внутрь электронной пушки-резонатора. Ниже приведена схема, из которой должно стать понятно, что и куда упало: тот самый сменный наконечник и отвалился.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Вариантов не оказалось - нужно нагревать весь модуль, транспортировать его в чистую комнату, демонтировать пушку и думать, как жить дальше. В том смысле, что повредилась она или нет. Во вводной части я писал, что даже мельчайшие царапины на внутренней поверхности сверхпроводника могут привести к темновому току или напрямую к квенчу.

А тем временем мы извлекли катодную вставку (уже без катода) и внимательно на нее посмотрели. Причиной потери наконечника оказалась сломанная пружина, которая удерживала катод. На фото ниже стрелка указывает на отсутствующий лепесток пружины.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Наблюдательный читатель сразу же заметит следы разряда на торце держателя и цветное напыление на самом держателе. Это следствие плохого электрического контакта между катодом и держателем. Высокие электрическое поле в пушке приводит к образованию искры в зазоре, которая распыляет поверхность и покрывает всё вокруг тонким слоем металла. Это очень плохо, но в данном случае является вторичной проблемой, которую тоже пришлось решать параллельно (необходимая сила прижима катода к держателю - порядка трёх тонн).

Тем временем мы очень аккуратно демонтировали пушку. Необходимо было её не переворачивать и не трясти, чтобы катод, который лежит внутри полуячейки не елозил и не создавал никаких царапин. Мы надеялись, что серьезных повреждений резонатор не получил, и после извлечения катода пушка будет работать.

Чтобы посмотреть внутрь пушки в чистой комнате, пришлось мудрить установку с маленькой камерой. Обычный эндоскоп не подходит - он смотрит "прямо", а при повороте можно случайно что-нибудь поцарапать. Кроме того, имеющиеся у нас эндоскопы давали не очень хорошее изображение - царапины можно и не рассмотреть. Но за несколько лет до описываемых событий, когда мы строили Европейский лазер на свободных электронах EuXFEL (подземный рентгеновский лазер длиной в 3,5 километра), я уже имел опыт создания систем для внутренней оптической инспекции сверхпроводящих резонаторов, поэтому сразу же прикупил такую малышку (See3Cam - не реклама):

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Собрали установку (камера должна быть жестко зафиксирована), всё промыли/продули и заглянули внутрь резонатора:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Катод лежит себе перевернутый как раз на сварном шве (горизонтальная полоса). Темная вертикальная полоса - это отражение катода. Поверхность ниобия, из которого сделан резонатор, электрополированная и "выглядит" как зеркало. А за счет вогнутой формы создает такие вот переотражения в виде полос. Как я писал в предыдущей части, катод имеет форму наперстка (ну или стакана, кому что ближе) и лежит "дном" вниз.

Дальше появился закономерный вопрос: а как этот катод из этой пушки достать? Да так, чтобы не елозить им и не наделать новых царапин. Рука внутрь не влазит. Зажимы, пинцеты тоже. Естественная мысль - применить такое высокотехнологичное устройство (картинка из интернета):

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Мы, конечно, не NASA и не марсоход запускаем, но все операции предварительно отрабатываем на макетах. Несколько дней возни с этим инструментом привели нас к выводу о том, что захватить катод, при этом не сдвинув его в сторону, не получится. Придумали использовать затвердевающий силикон, применяемый для создания слепков зубов. Мы с ним ранее уже работали для создания слепков внутренней поверхности ниобиевых резонаторов и, соответственно, проводили много тестов на совместимость материалов и его влияние на параметры резонатора. В общем, у нас было два пакетика одна марка силикона, которую точно можно было не боятся использовать в резонаторе.

Аккуратно вставляем тонкую трубочку в "стакан" катода (весь процесс контролируется только с помощью видеокамеры) и закачиваем в нее немного двухкомпонентного силикона. Стараемся не перелить, чтобы не капнуть на резонатор. Вот так это выглядит:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Потом ждем минут 15, пока силикон застынет, и аккуратно тянем за трубку вверх. Ниже фото уже извлеченного катода.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Цифрами обозначены: 1 - сам катод, 4 - затвердевший силикон, 5 - напыление на катод, о котором я рассказывал в предыдущей части. Это рабочая сторона катода. 6 - ПВХ трубка. Осмотрели с хорошим разрешением место, где лежал катод, и решили, что всё хорошо. Можно промывать деионизованной водой и собирать. Помню, что обратил внимание на странные отсветы от задней стенки пушки, когда фонариком светил. Там было несколько ярких пятен, которые не смещались, если двигать источник света. Близко не посмотреть, но вроде как несколько очень глубоких царапин.

На рисунке ниже фрагмент фотографии задней стенки пушки с отверстием для катода. Слева - фото из чистой комнаты после разборки пушки. Справа - фотография, которая была сделана во время работы модуля камерой-телескопом. Эта камера используется для контроля положения катода при его установке и разрешение у неё не очень хорошее. На пятна на правой тогда фотографии никто внимания не обращал, мало ли всяких отсветов и пятен. Это уже потом мы нашли это старое фото, чтобы разобраться, появились эти следы во время извлечения катода или до.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

На фото слева самый яркий дефект обозначен цифрой 1. Менее яркий - цифрой 2. Его не очень хорошо видно на фотографии, но если двигать источник света, то заметно было сразу. Центральный белый круг - это сквозное отверстие, в которое вставляется катод. Синими стрелками обозначены две полоски, которые являются границами кристаллических зёрен - задняя стенка пушки сделана из монокристаллического ниобия. Цветные пятна по всему изображению - это отражения камеры, светодиода на камере и даже людей. Наблюдательный читатель заметит концентрические окружности - это след обработки на токарном станке. После точения поверхность химически полировалась, но небольшие волны остались и хорошо заметны на отражение.

На фото справа видно сам катод, установленный в пушку, и те же самые два ярких пятна-дефекта. Тут я выдохнул, так как это было доказательство того, что не я эти дефекты сделал, извлекая катод. Но получается, что дефекты были там изначально.

И тут мы хором сказали: "Ага!", так как стало ясно, откуда у нас в пушке темновой ток, который мы намеряли во время теста:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

На графике зелеными кругами показаны значения без катода, а синими квадратами - с катодом. По горизонтали - напряженность электрического поля в мегавольтах на метр. На верхнем графике показан ток в наноамперах - ток без катода почти 100 наноампер, что ОЧЕНЬ много. Внизу - радиационная доза. Без катода 10 миллизиверт в час - это тоже очень плохо.

Мы-то думали, что просто плохо отмыли резонатор и при сборке внутрь попали пылинки/частички, поэтому всё так "светит". Ну и надеялись при переборке просто получше отмыть и поаккуратней собрать. Оказалось, что у нас там два "жестких" дефекта, которые уж точно не отмыть. Ну и ладно, у нас на подходе вторая пушка, которую уже протестировали (она выдавала рекордные характеристики) и отправили обратно производителю для приварки гелиевого бака.

Вот только, когда мы уже занимались извлечением катода, производитель сообщил, что повредил уже почти готовую пушку. При промывке сверхчистой водой под высоким давлением насадил пушку на сопло. Ниже показана схема и фото такой установки (взято из интернета):

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Картинка с сайта Raja Ramanna Centre for Advanced Technology. Как обычно, у меня полно фото с работы, но не специалистам на них ничего не разобрать, приходится в интернете искать.

Слева показана схема установки HPR (High Pressure Rinsing): деионизованна вода (18 МОм см) подается насосом (100 бар) через фильтр в сопло, которое создает несколько струй, направленных в разные стороны. Резонатор медленно движется вверх-вниз и вращается (или сопло вращается, по-разному делают). Таким образом струи медленно сканируют всю внутреннюю поверхность, очищая ее от любых пылинок. Процесс занимает 6-12 часов, зависит от размера резонатора. Поскольку в нашей пушке есть внутри стенка, то ее нельзя насадить "навылет" на штангу с соплом, а нужно остановиться в нескольких миллиметрах от стенки. Производитель делал отмывку пушки много раз в процессе производства (оно два года длится), но в этот день кто-то установил концевой выключатель на несколько сантиметров дальше, и бездушный робот со всей своей силы насадил пушку на сопло. При этом у него сработало аварийное выключение по замыканию контрольной цепи штанга-резонатор, и он не стал её усиленно гнуть, но от этого не сильно легче. В общем, вот фотография задней стенки:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Черный круг в середине - это катодное отверстие. Дуга над ним - это след контакта с соплом. Расплывчатый черный квадрат - это отражение камеры. По размеру дефекта очевидно, что пушка не пригодна к работе. Итого у нас "страйк" - две пушки из двух имеют дефекты в самый ответственных местах и непригодны к использованию. Весь тридцатимиллионный (это в евро) проект можно закрывать.

Вернемся к первой пушке. Теоретически, можно сделать химическое травление, чтобы полностью убрать или сгладить дефекты. Но оно снимет слой со всей внутренней поверхности резонатора и уменьшит его резонансную частоту. А резонатор уже вварен в титановый бак для жидкого гелия (есть фото в первой части), и значительно перенастроить его на нужную частоту не получится. Запас диапазона работы устройства подстройки частоты у нас был порядка 100-200 килогерц. Это позволяло стравить слой в 10-20 микрометров, но хватит ли этого, чтобы убрать или хотя бы сгладить дефекты?

К тому же, что это за дефекты: царапины/ямки, или выступающие заусенцы/выступы (такое тоже бывает)? Очевидно, нужно их как-то измерить. Как я писал выше, у меня уже была разработанная и проверенная технология получения слепков поверхности резонаторов с помощью зубоврачебного силикона (можно прямо на Пикабу посмотреть). Её мы и решили применить. Осталось только придумать, как налить силикон локально на край катодного отверстия и не заляпать всё вокруг. А там более, не пролить его через катодное отверстие в ячейку заградительного фильтра, откуда вымыть силикон будет очень сложно.

Отрываем Solid Edge и придумываем такую штуку для изготовления слепка поверхности:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Пластиковые детали корпуса (обозначены розовым и зелёным цветом) напечатаны на 3D принтере (куда же без него). На схеме указаны уплотнительные элементы, сделанные из того же затвердевающего силикона. Тут вся хитрость именно в этих уплотнениях. После печати корпуса детали я помещаю её в специальную форму (тоже напечатанную на 3D принтере) и наливаю туда силикон. Он прямо на вставке формирует двойные уплотнительные элементы. На рисунке справа показано, как эта вставка устанавливается на заднюю стенку резонатора (он стоит вертикально). При этом уплотнительные кольца плотно затыкают катодное отверстие пушки (на рисунке в нем головка болта находится) и на плоской стенке тоже ограничивают зону, на которую разольётся силикон. После этого прямо в эту розовую вставку я налил силикон (на правом рисунке он уже налит).

В процессе это выглядит примерно так. Заготовка с уплотнительными элементами:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Это тестовая деталь для отработки на макете, поэтому у нее повреждено уплотнение. Справа виден конец ПВХ трубки, по которой подается жидкий силикон.

Установленная вертикально пушка со вставленной внутрь системой для изготовления слепка. Вверх торчат обмотанный белым скотчем пруток и заполненная голубым силиконом трубка. Шприц с силиконом лежит рядом на столе.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Если заглянуть внутрь, то увидим такое:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

После застывания силикона я всё это вытаскиваю за пруток. На следующем фото - готовый силиконовый слепок поверхности.

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Теперь вырезаем из слепка нужный нам участок с дефектом и смотрим на него в микроскоп. Да не в простой, а в лазерный конфокальный. Ниже я упрощённо набросал принцип его работы:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Образец освещается лазером через полупрозрачное зеркало. В нашем случае лазер фиолетовый (405 нм), но это не принципиально. От длины волны лазера зависит предельное разрешение, но в данном случае оно нас не интересует. Отраженный от образца свет (зеленые линии) еще раз отражается от зеркала и попадает в камеру. Но перед этим проходит через маленькое отверстие - пинхол. Оно установлено в таком месте, что через него может пройти только свет от тех частей образца, которые лежат в фокальной плоскости объектива. На рисунке такие лучи обозначены зеленым цветом. Лучи, отраженные от частей образца вне фокальной плоскости (например, обозначенные красным), не могут пройти через пинхол. Таким образом, камера будет видеть только ту часть поверхности, которая лежит в фокальной плоскости. Если образец двигать вертикально, то для каждого положения образца можно получить свой "срез" (это не срез в полном смысле. Внутренности образца мы не видим). Т.е. можно сразу же построить карту высот - 3D изображение поверхности. В современных микроскопах образец не двигается, а двигается пинхол. При этом с очень высокой точностью - в десятки нанометров. В итоге можно получить оптическое изображение с нанометровым разрешением по высоте (но только по высоте, горизонтальное разрешение всё равно определяется длиной волны используемого света).

Ниже на картинке изображение дефекта под номером 1:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

А вот его трёхмерное изображение:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Сразу же появились кое-какие ассоциации:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Недалеко находился второй дефект. И он был очень похож на первый. Вот оба дефекта в сравнении (все надписи я перевел на русский):

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Очевидно, что оба дефекта были сделаны одним "инструментом", который ударился о внутреннюю поверхность. Острые края дефектов указывают на то, что они появились после химической полировки. Ниже для сравнения приведено изображение области вокруг второго дефекта:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Вы можете заметить, что дефекты 4, 5 и 6 "размазаны", т.е. появились до химического травления и большой проблемы не представляют.

Мы долго переписывались с американским производителем первой пушки, но они так и не смогли установить, каким инструментом или частью установки дефекты 1 и 2 могли быть созданы.

Острые края хорошо объясняли высокий темновой ток, который мы получили во время тестирования. Поскольку у нас появилась 3D модель дефектов, мы немедленно провели симуляцию темнового тока. Ниже показана схема расположения дефектов относительно катодного отверстия и сравнение результатов моделирования с изображением "креста", полученным на сцинцилляционном экране во время тестирования:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

С дефектами мы разобрались, симуляцией всё подтвердили. Осталось придумать, как всё починить.

Из трехмерного изображения дефекта мы узнали, что его глубина составляет примерно 80 микрометров. Как я ранее уже указал, мы могли себе позволить сделать только 20 микрометров химического травления, чтобы частота резонатора оставалась в допуске. Единственным вариантом было удаление дефекта механической полировкой.

К этому времени я уже сделал слепок дефекта от встречи с соплом во второй пушке:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Глубина дефекта составляет порядка 30 мкм:

Как шуруповёртом ускоритель починить (Часть 2) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Вакуум, Научпоп, Высокое напряжение, Микроскоп, Силикон, Чужой, Пятничный тег моё, Длиннопост

Значит и вторую пушку нельзя отремонтировать без механической полировки. В посте уже максимально допустимое количество картинок, поэтому про хитрости полировки (а их там очень много) и тот самый шуруповёрт я расскажу в следующей части.

Сегодня вы узнали, как можно заглядывать в труднодоступные места и аккуратно доставать оттуда различные предметы, как еще можно использовать "зубопротезный" силикон, и разобрались с последним (ну почти) словом техники в световой микроскопии. На все ваши вопросы я с удовольствием отвечу в комментариях.

Показать полностью 24
379

Как шуруповёртом ускоритель починить (Часть 1)

Строили мы как-то сверхпроводящий ускоритель-рекуператор. Чтобы понять то, о чем я буду дальше писать, я немного объясню общие принципы работы и устройство такого ускорителя. Вот его схема:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

На рисунке видно три ускоряющих модуля (синие), кольцо (которое не кольцо совсем) и поглотитель пучка (справа внизу).

Свой недолгий путь электроны начинают в инжекторе (слева внизу), еще сильнее ускоряются в бустере (второй модуль слева) и инжектируются в основной линак (синий модуль в центре). Линак их всех ускоряет еще сильнее - до 50 МэВ. Эти быстрые электроны не успевают повернуть в поглотитель и улетают по кругу, возвращаясь на вход основного линака. Только прилетают они к нему в противофазе (мы специально так длину кольца подобрали) и поэтому вместо ускорения тормозятся. На схеме с синусоидой показано, как сгустки электронов на вершине синусоиды ускоряются, а в минимумах - замедляются. При замедлении они отдают свою энергию обратно в резонаторы ускорительного модуля и вылетают справа уже замедленные до 6,3 МэВ. Теперь электроны "медленные" (так-то всё равно у них почти скорость света, просто энергия ниже) и не успевают проскочить поворот в поглотитель, где и тормозятся о медный блок. Тут вся идея в том, что энергия, которую отдали "быстрые" электроны при торможении, сразу же используется для ускорения "медленных", которые прилетели из инжектора. Т.е. происходит та самая рекуперация энергии. Сгустки из инжектора идут один за другим с частотой 1,3 ГГц, т.е. каждые 0,77 наносекунды. Конкретно в этом ускорителе нет никакого практического смысла - он просто ускоряет электроны и затем тормозит их же. Его задача - создание и экспериментальная отработка большого числа технологий, необходимых в таких системах.

Мы же с вами в этой статье сосредоточимся на инжекторе. Вот его схема (вид сверху):

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

В модуле инжектора находится его ключевой компонент - фотоэмиссионная сверхпроводящая пушка. Ну, еще сверхпроводящий соленоид и поглотитель высших мод (ПВМ). К пушке пристыкованы два каплера - антенны ввода мощности по 120 кВт и система крепления катодной вставки (левее пушки).

Вот схема пушки с обвязкой.

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

А вот так она выглядит без тюнера и каплеров:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Пушка представляет собой простой (ну, не совсем простой) электромагнитный резонатор. Вот он "голый" (это официальный термин, между прочим, - naked cavity), т.е. без гелиевого бака:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Немного познакомимся с устройством. На картинке цифрами обозначены: 1 – катодная труба (это "зад" пушки. В катодную трубу вставляется катодная вставка с самим фотокатодом), 2 – ячейка заградительного фильтра (это полость резонатора, настроенная так, чтобы электромагнитное поле из основного резонатора не уходило в катодную трубу), 3 – полу ячейка, 4 – главная ячейка резонатора, 5 –два порта каплеров (к ним пристыковываются антенны ввода мощности), 6 – пучковая труба, 7 – задняя стенка, 8 – отверстие для фотокатода (в него почти вровень с задней стенкой устанавливается фотокатод).

А вот сама катодная вставка, которая сзади вставляется в пушку:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Эта штука целиком вставляется в катодную трубу резонатора. Тут цифрами обозначены: 1 – транспортировочный стержень (с его помощью катодную вставку устанавливают в пушку. После этого стержень убирается), 2 – керамический тепло- и электроизолятор, 3 – фильтр Петрова (хитро посчитанная форма металлического корпуса для создания резонаторных полостей, служащих индукционными и емкостными элементами фильтра), 4 – байонетная пружина, 5 – держатель катода, 6 – фотокатод.

На самом деле держатель катода (5) внутри полый и имеет еще несколько коаксиальных тяг и пружин. Их задача сильно прижимать катод к держателю для его охлаждения и обеспечения электрического контакта:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Вот тот красный цилиндр справа и есть фотокатод. Это молибденовый цилиндр, на торец которого напылен слой материалов с высоким квантовым выходом. Ниже фото торца катода после напыления материалов:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

В нашем случае напылено покрытие из цезия-калия-сурьмы (K2CsSb). Но бывают и другие (см. график ниже).

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Тут видно, что даже для лучших материалов квантовый выход не превышает 20%. И даже это даётся очень дорого - напыление в сверхвысоком вакууме, хитрый график нагрева и отжига для формирования правильного химического соединения. Транспортировка из синтезирующей лаборатории в ускоритель в специальном вакуумном "чемодане". И при всём при этом готовое напыление "живёт" всего неделю при нашем сверхвысоком вакууме (который очень даже ничего себе).

Итак, фотокатод устанавливается в резонатор-пушку. В резонатор через антенны-каплеры подается СВЧ мощность. Через пучковую трубу на катод светит ультрафиолетовый лазер. Лазер выбивает электроны из фотокатода. Электроны сразу же подхватываются электромагнитным полем, ускоряются в полу ячейке, потом влетают в основную ячейку, где ускоряются уже почти до скорости света, и вылетают из резонатора. Примерная схема того, как это работает:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

На картинке катод установлен в резонатор. Правее резонатора красным показан сверхпроводящий соленоид (магнитная катушка). Он выполняет роль магнитной линзы - фокусирует электронный пучок. Красными и желтыми линиями показаны границы электронного пучка для разных режимов.

Работает вся эта красота на частоте 1,3 ГГц при температуре 1,8 К (Кельвинов. Это -271,35 градусов Цельсия) и вакууме порядка 5e-11 мбар. При этом катодная вставка целиком достается и устанавливается без необходимости нагревать модуль или прерывать вакуумную откачку - очень замороченное устройство. Резонатор сверхпроводящий - сделан из чистейшего ниобия. Собственная добротность у него при рабочей температуре порядка 1e10. Т.е. собственные потери составляют одну десятимиллиардную.

Напряженность электрического поля на внутренней поверхности резонатора порядка 40-50 МВ/м (мегавольт на метр). При такой напряженности поля электроны вылетают из любой шероховатости или пылинки. И уж тем более из любой царапины. Эффект называется автоэлектронной (полевой )эмиссией (да-да, "любимые" всеми студентами Фаулер с Нордгеймом и Шоттки с его эффектом). Для правильной работы ускорителя электроны должны вылетать только с фотокатода и только в строго определенное время (именно тогда, когда его облучают импульсом лазера), чтобы попасть в нужную фазу во всех остальных элементах ускорителя. Любые посторонние электроны создают так называемый темновой ток (не тот, который в фотодиодах).

Такие электроны могут не просто лететь в ненужной фазе, но и лететь "вбок" или вообще в противоположную сторону. При ударе о любую поверхность (в самом резонаторе или в трубе в любой другой части ускорителя) разогнанные электроны во-первых, приведут к выделению тепла и тормозного излучения в рентгеновском или гамма-диапазоне, а во-вторых, выбъют из материала еще больше электронов (называемых вторичными электронами), которые в свою очередь продолжат этот праздник.

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Если же в стенку они ударятся внутри сверхпроводящего резонатора, то выделение тепла может привести к потере сверхпроводимости - квенчу. В случае отсутствия быстродействующих схем защиты, которые мгновенно (за сотню микросекунд) выведут всю мощность из резонатора, жидкий гелий, охлаждающий резонатор снаружи, вскипит, т.е. превратиться в газ. А газообразные гелий занимает в 900 раз бОльший объем, чем жидкий. В общем, он просто разорвет и резонатор и модуль и трубопроводы. Вот пример разрушений вокруг от квенча сверхпроводника (в данном случае это был магнит) в жидком гелии:

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Короче, темновой ток нам совсем не нужен. Когда его чуть-чуть, еще жить можно. Но желательно, чтобы совсем не было.

С основами разобрались, теперь можно к главной истории переходить.В общем, через пару недель тестов полностью собранного модуля катод уронили в пушку. (здесь были мои слова в адрес нескольких выдающихся уже бывших коллег).

Как шуруповёртом ускоритель починить (Часть 1) Физика, Наука, Ускоритель, Электроны, Сверхпроводники, Гелий, Вакуум, Лазер, Научпоп, Высокое напряжение, Взрыв, Длиннопост

Просто разобрать и собрать снова (если ничего не поцарапалось) - около года работы группы инженеров в чистой комнате. А если поцарапалось - нужно ставить вторую пушку, которая как раз находилась в производстве.

Что мы обнаружили при разборке модуля и как потом всё это дело чинили - во второй части. Там будет много картинок, как вы любите. Сюда уже просто не влезет после такого длинного введения. Зато вы теперь неплохо разбираетесь в устройстве ускорителей-рекуператоров и сверхпроводящих инжекторов.

Показать полностью 12
2792

Немного фотографий нового адронного коллайдера NICA

Свежие фотографии из тоннеля коллайдера NICA в Дубне. С краткими пояснениями.

Кольца коллайдера (по сути это два отдельных ускоителя) расположены одно над другим. В них частицы летят в противоположных направлениях. На фото виден торец модуля сверхпроводящих магнитов. Кольца, по которым будут лететь частицы, закрыты большими фланцами.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

В основном, в модулях установлены магниты - линзы, которые удерживают и направляют пучок заряженных частиц. Из них почти целиком состоит всё кольцо. Еще не все модули установлены, но работа уже близится к завершению.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

Ускорением же занимаются электромагнитные резонаторы. На фото ниже один из них - станция ВЧ-1.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

Одна из станций ВЧ-1 - резонатор, накапливающий и формирующий пучок в кольце.

На самом деле рзонаторы первой ("барьерной") ВЧ системы не занимаются ускорением - они только формируют пучок. Сгусток уже ускоренных частиц прилетает (инжектируется) в коллайдер из Нуклотрона (а в него из бустера, а в него из линейного ускорителя). Этот сгусток очень длинный - занимает примерно половину длины кольца. Барьерная ВЧ система сжимает его в более короткий, чтобы освободить место для еще одного сгустка. Затем она сжимает второй сгусток и "складывает" его к первому. И так далее, пока в первом сгустке не накопится необходимое количество частиц. После этого система ВЧ-1 может даже немного ускорить его, но штатно этим занимаются системы ВЧ-2 и ВЧ-3. Их фото я покажу в другой раз. Всего на каждом кольце суммарно 13 резонаторов трёх ВЧ систем.

Ниже - вакуумный корпус для поворотных (дипольных) магнитов.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

А тут - углеродная "рама" детектора MPD. На ней собираются элементы детектора. Про детектор нужно писать отдельно - там много интересного.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

Можете оценить толщину углепластика

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

Элементы детектора доставлены и ждут начала сборки.

Немного фотографий нового адронного коллайдера NICA Наука, Физика, Ускоритель, Коллайдер, Россия, Элементарная частица, Фото с работы, Ядерная физика, Дубна, Длиннопост

Как будет время - еще фото выложу. Обычно забываю сфотографировать во время работы. Если прям совсем много времени будет (ха-ха), то напишу подробно и с картинками, как это всё устроено и работает.

Подписываться не нужно (как хотите), телеграм не скажу.

Показать полностью 7
3302

Большой Адронный Коллайдер1

Большой Адронный Коллайдер Физика, Ускоритель, Большой адронный коллайдер, Научпоп, Ядерная физика, Наука, Фото с работы, Ученые

Надо бы написать понятный длиннопост с картинками про устройство детекторов на Большом Адронном Коллайдере. Но что-то страшно за такую задачу браться. Поэтому вот вам пока для затравки вчерашняя фотка из Компактного Мюонного Соленоида (CMS).

Показать полностью 1
1671

Ответ на пост «НАЙДЕН ГРААЛЬ ФИЗИКИ - ГОРЯЧАЯ СВЕРХПРОВОДИМОСТЬ?»3

Вот видео с высокотемпературным сверхпроводником YBCO (оксид иттрия-бария-меди).

Сам сверхпроводник - черный керамический диск на дне пенопластовой коробки. В пенопласт заливается жидкий азот (температура 78 К) для охлаждения керамики. В этом видео я вылил азот, и, пока керамика не нагреется выше 93К, она остается сверхпроводящей.

Обычно со сверхпроводниками демонстрируют эффект Мейснера - вытеснение магнитного поля из сверхпроводника. В этом случае сверхпроводник парит над магнитом. В видео ниже я положил YBCO внутрь алюминиевого "корпуса" в виде летающей тарелки:

Возможно, вы обратили внимание, что "дорога" сделана из трёх рядов магнитов - центральный ряд лежит другим полюсом кверху. Это сделано, чтобы в магнитном поле была "яма", в которой и дрежится летающая тарелка. Именно поэтому она не соскальзывает в сторону и "следует" за "дорогой".

Теперь вернемся к первому видео: сверхпроводник парит над магнитом, но если я его переворачиваю, то он висит под ним и не падает. Весь секрет в захвате магнитного потока. Если материал переходит в сверхпроводящее состояние во внешнем магнитном поле, то он не вытесняет весь магнитный поток из своего объема, а "замораживает" его. Т.е. становится постоянным магнитом.

Итого:

  1. Если охладить сверхпроводник без внешнего магнитного поля, то он будет парить над магнитом ( и стараться с него соскочить, если форма поля позволит) - прямо как в видео №2: я положил щипцами летающую тарелку в термос с жидким азотом, а потом достал ее и поставил на магниты.

  2. Если охладить сверхпроводник во внешнем магнитном поле, то он захватит весь или часть магнитного потока и станет постоянным магнитом. В первом видео я положил коробку с керамикой на магниты и налил в нее жтдкий азот, чтобы охладить сверхпроводник во внемшнем магнитном поле.

P.S. Я специально не разводил тут про сверхпроводники первого и второго рода и тому подобные тонкости. Специалисты могут блеснуть своими знаниями в комментариях. Часть моих постов можно найти тут.

Показать полностью 1
159

Моя работа

В жизни учёных периодически случаются конференции и всякие массовые мероприятия. Вот и я всю прошлую и следующую неделю учу других учёных со всей планеты тонкостям СВЧ измерений резонаторов и прочих запчастей для ускорителей частиц.

Моя работа Наука, Физика, Ускоритель, Церн, Работа, Учеба, Длиннопост, Волна постов

Мероприятие называется CERN Accelerator School: RF for Accelerators.

Моя работа Наука, Физика, Ускоритель, Церн, Работа, Учеба, Длиннопост, Волна постов

Нагрузки серьезные - с 8:30 до 18:00 сплошные лекции и лабораторные. Но работать приятно - почти все ученики имеют кандидатскую степень.

Моя работа Наука, Физика, Ускоритель, Церн, Работа, Учеба, Длиннопост, Волна постов

Опять же - на основную работу не нужно ходить.

Показать полностью 3
81

Срез ростка сосны

Продолжаю баловаться с микроскопом в свободное от чтения Пикабу работы время. На этот раз делюсь снимком среза ростка сосны (род Pinus). Конкретный вид не знаю, у меня лапки я физик всё-таки.

Срез ростка сосны Научпоп, Наука, Биология, Растения, Микроскоп, Пятничный тег моё

Оригинальное разрешение примерно такое:

Срез ростка сосны Научпоп, Наука, Биология, Растения, Микроскоп, Пятничный тег моё
Показать полностью 2
Отличная работа, все прочитано!