Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
🔥 Дрифт и гонки без правил!
Садись за руль, жги резину и уноси баллы в безумных поворотах!
🚗 Реалистичный дрифт
🏁 Захватывающие трассы
💨 Улучши свою тачку и побеждай!

Дрифт Без Лимита

Гонки, Симуляторы, Спорт

Играть

Топ прошлой недели

  • Oskanov Oskanov 8 постов
  • AlexKud AlexKud 26 постов
  • StariiZoldatt StariiZoldatt 3 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня

Geektimes

С этим тегом используют

Комментарии Космос Копипаста Наука Не мое Интернет Игры Все
628 постов сначала свежее
552
JohnAyvazovskiy
JohnAyvazovskiy
8 лет назад
Fallout

«Fallout 1.5: Resurrection»: игровой постапокалипсис, каким он должен быть⁠⁠

«Fallout 1.5: Resurrection»: игровой постапокалипсис, каким он должен быть Geektimes, Fallout, Моды, Ностальгия, Видео, Длиннопост

Кто не знает Fallout? Наверное, эту игру знают все. И большинство поклонников серии постапокалиптических приключений обитателей Убежищ знакомы не только с трехмерными играми, но и с первыми изометрическими вариантами. Сейчас любители «лампового» Fallout могут быть довольны: можно поиграть в мод для Fallout 2, который называется «Fallout 1.5: Resurrection».


Те, кто ознакомился с этим модом, утверждают, что «это тот Fallout 3, каким он должен был быть». Все начинается в с пробуждения персонажа в грязной канаве. Главный герой мало что помнит, а вокруг — множество мутантов. Для того, чтобы отсюда выбраться, сначала нужно победить парочку радскоприонов. Это сразу напоминает игроку, что он находится в среде старого доброго Fallout, а не современных его инкарнаций.


Создали мод разработчики из Чехии. Они потратили на разработку десять лет и на перевод еще два с половиной года. Так много времени ушло не только потому, что мод действительно обширен, но и потому, что команда не посвящала все свое время разработке. Интересно, что на чешском языке мод вышел еще в 2013 году, так что новым его назвать нельзя. В любом случае, мод представляет собой уникальный игровой мир, разработанный если не совсем с нуля, то близко к тому.


Устанавливается мод без всяких проблем на оригинальную копию Fallout 2, после чего можно начинать игру. Вот интересные факты о моде:


Сюжет охватывает территорию Нью-Мексико. Fallout 1.5 назван так потому, что события происходят между первой и второй частями, причем есть отсылка к НКР;

Городов не так много — примерно столько, сколько их было в первой части. Правда, заданий очень большое количество, увеличено и число способов выполнения заданий;

Ходовая валюта по-прежнему крышки. Нет машины (к сожалению), нет Братства Стали. Есть несколько высокотехнологических объектов.


Кроме сюжетной линии и персонажей есть и несколько новых возможностей. Например, это графика в hi-res, сохранения в любом количестве и возможность работы с колесом мышки. Эти обновления не вызывают ощущения чужеродности, разработчики просто постарались сгладить некоторые не слишком удачные моменты первых версий.


Зато старый интерфейс и начальное подземелье сразу же дают игроку ощущения погружения в «тот самый» Fallout. Сюжетная линия также традиционна. Сам мод представляет собой смешение сюжетов и персонажей Fallout 1 и 2, с новыми квестами, поселениями и большим числом новых персонажей. Создатели мода говорят, что сюжет здесь нелинейный, причем выполнять различные задания можно очень по-разному. Искать секретные объекты придется самостоятельно — никаких автоматических отметок на карте, ничего подобного.


В процессе прохождения игрок постоянно будет чувствовать враждебность окружения — помогать мало кто хочет, а вот отнять жизнь персонажа вместе с парочкой вещей — это всегда пожалуйста. Проходить игру тоже можно по-разному — либо убивать всех подряд, либо пробовать убеждать. Все зависит от желания игрока и характеристик персонажа. Решая различные вопросы, вам придется столкнуться с большим количеством этических дилемм. Идеального решения здесь нет, приходится выбирать лучшее решение из нескольких худших.


Разработчики утверждают, что игра представляет собой «Fallout для поклонников Fallout», поэтому новички могут и не найти мод таким же привлекательным, как те геймеры, кто давно знаком с этим миром и его героями. Мод дает несколько усложнений. Так, если в Fallout 2 можно было побродить по карте (или даже пройти всю игру за 15 минут), то здесь в отдаленных регионах персонаж быстро натолкнется на толпу гулей, вооруженных hi-tech оружием. Они уничтожат Избранного еще до того, как он добежит до края экрана, пытаясь спастись.


По словам разработчиков, сюжетная линия рассчитана на 25 часов прохождения. Геймплей позволяет не только насладиться миром игры, но и понять его темную сторону, ознакомиться с обратной стороной медали. Играя в «Fallout 1.5: Resurrection» можно забыть о том, что это мод. На самом деле, это практически новая игра, с той графикой и геймплеем, какой необходим по представлениям многих олдскульных игроков.


Здесь более 80 участков карты, на которых можно что-то делать и 736 скриптов. Как уже говорилось выше, сюжет очень обширен. Если не спешить с прохождением, можно потратить на игру и больше 25 часов.


Скачать мод можно отсюда (http://resurrection.cz/en/download/). Кроме этого мода, можно попробовать поиграть и в русскоязычный Fallout: Nevada. В Сети о нем можно найти большое количество отличных отзывов. К текущему моду игроки тоже относятся, в основном, положительно. Мод абсолютно бесплатен — его делали фанаты для фанатов, так что о деньгах речи нет.


Первая часть Fallout вышла в 1997 году. Выпустила ее компания Interplay Entertainment, вернее, ее подразделение Black Isle Studios. В этой части первым главным заданием жителя Убежища было найти водный чип для замены старого, испортившегося. Без него обитатели Убежища просто не выжили бы. Главной особенностью игрового процесса является то, что в игровом мире игрок обладает полной свободой действий — он может путешествовать, общаться, сражаться, выполнять задания (основные и побочные), получать необходимую информацию.


https://geektimes.ru/post/281328/

Показать полностью 1
Geektimes Fallout Моды Ностальгия Видео Длиннопост
83
1547
JohnAyvazovskiy
JohnAyvazovskiy
8 лет назад
Лига биологов

Что происходит с организмом медведя во время спячки? Комментарий специалиста⁠⁠

Что происходит с организмом медведя во время спячки? Комментарий специалиста Медведи, Спячка, Geektimes, Длиннопост

Каждую осень медведи умеренных и полярных широт (в частности бурый и черный) начинают готовиться к спячке. Всю весну, лето и осень эти животные активно питались, нагуливая запасы жира на зиму. А теперь, когда наступают холода, они ищут подходящее укрытие для того, чтобы перезимовать. После того, как укрытие найдено, медведь впадает в спячку.


Спячка медведей в некоторых случаях длится до полугода. Во время спячки некоторые виды, например, черный медведь (Ursus americanus), снижают пульс с 55 ударов в минуту до примерно 9. Уровень метаболизма снижается на 53%. Естественно, все это время медведи не едят, не пьют и не производят отходы жизнедеятельности. Как им это удается?


Для понимания того, что происходит в теле медведя во время спячки необходимо сразу уточнить, что представляет собой сама спячка. И почему это не «анабиоз» в прямом смысле слова. В буквальном понимании этого термина «анабиоз» представляет собой процесс полной неактивности животного. В это время уровень метаболизма снижается до показателей, которые для большинства высших животных являются несовместимыми с жизнью.


Некоторые виды земноводных (некоторые тритоны и лягушки) замерзают в морозы, без вреда для себя оттаивая при наступлении теплого сезона. Безболезненным это «промерзание» буквально насквозь для них является в связи с выработкой специфического вещества, имеющего свойства антифриза, который препятствует замерзанию воды в их организме.


Медведи не замерзают. Температура их тела во время спячки остается достаточно высокой, что позволяет им очнуться в случае какой-либо опасности, выйдя из берлоги. Кстати, медведей, которые проснулись раньше времени, называют «шатунами». Они представляют значительную опасность для человека, поскольку зимой медведь не может найти достаточное количество пищи, и всегда голоден, и агрессивен.


Некоторые исследователи утверждают, что медведи не впадают в анабиоз, как и говорилось выше. Но есть и ученые, которые называют медведей «супер-анабиозниками», поскольку не есть, не пить и не испражняться по полгода, оставаясь при этом в состоянии быстро выйти из спячки — это уникальное явление в животном мире.


«По моему мнению, медведи лучшие анабиозники в мире», — говорит Браян Барнес (Brian Barnes) из Института арктической биологии Университета Аляски (Фэйрбенкс). Этот ученый провел три года, изучая особенности спячки черных медведей.


«Их тело — закрытая система. Они могут провести всю зиму, используя только кислород для дыхания — это все, что им нужно», — говорит Барнес.


Почему медведи не испражняются во время спячки? Если коротко, то потому, что в их организме в это время образуется фекальная пробка. Это особая масса, которую исследователи уже давно находили в пищеводах медведей, впавших в спячку.


Ранее считалось, что медведи перед тем, как залезть в берлогу, поедают большое количество растительного материала, шерсти других медведей и других материалов, которые не перевариваются, и которые потом образуют пробку в кишечнике животного. Ученые, которые пришли к такому выводу, во многом полагались на информацию, полученную от охотников на медведей. Те утверждали, что способ питания, о котором говорилось выше, приводил к «скреплению кишечника» и животное просто не могло во время сна провести акт дефекации.


На самом деле, это не так. Медведи ничего особенного не едят перед спячкой. Они, как всеядные животные, стараются потреблять любую доступную им еду, включая фрукты, овощи, орехи, мясо, рыбу, ягоды и многое другое.


А во время спячки кишечник животного продолжает работать. Не в режиме прежней активности, но все же он работает. Клетки продолжают делиться, осуществляется кишечная секреция. Все это формирует небольшое количество фекалий, которые и накапливаются в кишечнике животного. Формируется «пробка» диаметром от 3,8 до 6,4 сантиметров.


«Фекальная пробка — это те же отходы жизнедеятельности, которые находятся в кишечнике животного так долго, что стенки кишечника абсорбируют жидкости из этой массы, оставляя ее сухой и твердой», — говорится на сайте Североамериканского центра изучения медведей. Таким образом, организм медведя не теряет такую необходимую ему воду, запасы которой в берлоге восполнить практически невозможно.


Специалисты размещали в берлогах медведей камеры, которые записывали все происходящее во время спячки. Как оказалось, волокна растений и шерсть часто являются составной частью пробки потому, что медведь даже во время спячки может подбирать что-то с земли в берлоге, а может и слизывать свою шерсть.


После того, как медведь выходит из берлоги, они очищают кишечник, который начинает функционировать нормально. Обычно дефекация происходит уже на пороге берлоги. Поэтому никакой мистики или загадки, как об этом говорят некоторые охотники или даже ученые, в медвежьей пробке нет. Все это — продукт жизнедеятельности организма. Кстати, медведь в берлоге вовсе не сосет лапу. Дело в том, что в январе и феврале происходит смена кожного покрова на подушечках лап. Старая кожа лопается, зудит, что причиняет медведю известные неудобства. Для того, чтобы облегчить зуд, медведь облизывает лапы.


Для того, чтобы прояснить детали процесса спячки у медведей, я запросил комментарий у ученых из Криворожского государственного педагогического университета.


Каким образом медведи поддерживают свой организм в состоянии спячки?


Каждое животное существует за счет обмена веществ и энергии, которые обеспечиваются потребляемой пищей. Естественно, что чем активнее образ жизни и интенсивнее физиологические процессы, тем больше «топлива» в виде пищи нужно вводить в организм. В организме же, пребывающем в состоянии покоя в виде спячки, интенсивность всех обменных процессов сведены до физиологического минимума. То есть, энергии затрачивается ровно столько, сколько ее необходимо для того, чтобы зверь оставался живым и чтобы не произошли дегенеративные процессы в тканях и органах в связи с нехваткой энергии. В целом это состояние можно сравнить с тем, что происходит во время обычного сна, но, естественно, оно более «утрированно».


Основным потребителем энергии в организме являются головной мозг и мышцы (не менее 2/3 всей энергии организма). Но поскольку мышечная система во время сна неактивна, то энергии ее клетки получают ровно столько, сколько необходимо для поддержания их существования. Поэтому на «малых оборотах» начинают работать и остальные органы, также получающие весьма мало энергии. Пищеварительной системе по сути нечего переваривать (поскольку кишечник почти пуст, как было сказано выше). Откуда же тогда берется этот минимальный объем энергии, который все же зверю необходим? Он извлекается из запасов жира и гликогена, накопленных за активный период года. Расходуются они постепенно и обычно их хватает до самой весны.


Кстати, шатунами довольно часто становятся именно те медведи, которые летом «плохо кушали». Известно немало устных рассказов о том, что шатунов в голодные годы больше. Итак, запасы жира и гликогена – основной источник энергии. Еще одним жизненно важным веществом является кислород. Но поскольку организм малоактивен, то и кислорода нужно гораздо меньше. Таким образом, частота дыхания значительно снижается. А если ткани организма при спячке требуют весьма малое количество кислорода и питательных веществ, то и крови, которая их переносит, можно двигаться гораздо медленнее. Поэтому и частота сокращений сердца значительно уменьшается, а соответственно, сердце потребляет также меньше энергии. С экономией воды связано не только «закупоривание» кишечника, но фактическая приостановка деятельности почек.


Есть ли другие примеры спячки среди теплокровных животных?


Такое приспособление, как спячка у медведей является весьма необычным для теплокровных явлением, но вовсе не уникальным. Она также есть у ежей умеренных широт, обитателей степей Евразии сурков, некоторых представителей семейства Куньих (барсук). В особенно холодные и голодные зимы в подобное состояние могут впадать белки и енотовидные собаки, но ненадолго, а их процессы жизнедеятельности не замедляются так, как это бывает у медведей. Кроме зимней спячки (гибернации), бывает также и летняя спячка (эстивация). В последнюю впадают некоторые обитатели жарких пустынь (некоторые насекомоядные, грызуны, сумчатые).


Это бывает в наиболее жаркие периоды года, когда добыча корма и воды становятся гораздо более энергозатратными и, по сути, неэффективными. Поэтому животному проще впасть в спячку и переждать неблагоприятные условия. Кроме сезонной спячки бывает также и суточная. Она характерна для некоторых летающих теплокровных – колибри и летучих мышей. Дело в том, что и одни, и другие во время полета очень быстро машут крыльями. Благодаря этому их полет стал более маневренным, а добыча корма более эффективной. Но за все в природе нужно платить. Их летательные мышцы потребляют очень много энергии, которой не хватает на полные сутки (несмотря на то, что и колибри, и летучие мыши за активную фазу суток потребляют пищи массой более половины собственной массы).


Как видим, скорость обмена веществ у них просто колоссальна. Поэтому во время сна (а отдых в виде сна необходим каждому животному – это также нормальный и обязательный физиологический процесс) их жизнедеятельность снижается до параметров, сравнимых с теми, что наблюдаются у медведей.


Чем отличается состояние спячки медведей от, например, анабиоза лягушек?


У теплокровных физиологические процессы при спячке не могут быть полностью «выключенными». На то они и теплокровные – необходимо самостоятельно произведенное тепло. Другую картину можно наблюдать у пойкилотермных животных – их процессы жизнедеятельности практически полностью приостанавливаются. То есть клетки организма пребывают практически в законсервированном состоянии до наступления лучших времен – когда пригреет солнце и даст достаточно тепла, что разогреть тело. Это бывает у всех земноводных умеренных и более северных широт.


Известен факт, что особи хвостатого земноводного сибирского углозуба после того, как были буквально вмерзшими в лед на протяжении нескольких десятилетий (!) после оттаивания «оживали» и чувствовали себя вполне нормально. Также в анабиоз впадают и зимующие змеи и ящерицы, но их организм не настолько живуч (замерзания они не перенесут). Другой пример – рыбы, живущие в пересыхающих водоемах Африки, Южной Америки и Австралии, и закапывающиеся в ил на период засухи. Процессы, происходящие в их организме в этот период близки к тем, что происходят у земноводных – почти полная приостановка жизнедеятельности до лучших времен.


Что касается рептилий жарких стран, то нужно сказать, что, хотя они и холоднокровные, но переживание неблагоприятных условий у них больше сходно с таковым у теплокровных – значительное снижение интенсивности физиологических процессов, но не остановка (солнечной тепловой энергии ведь достаточно). Крупные рептилии (крокодилы, питоны и удавы) таким образом «отдыхают» до года, переваривая съеденную крупную добычу.


Можно ли искусственно создать режим спячки для животных, которые не впадают в спячку?


Нет. Это будет ненормальное состояние, подобное коме.


Как мог появиться подобный механизм зимовки у медведей? Вырабатывался ли такой механизм в течение многих сотен тысяч лет или появился спонтанно?


Все физиологические процессы контролируются генетически. В ходе эволюции у определенной группы особей могла возникнуть некая физиологическая особенность, заключающаяся в особом режиме сна (суточного, нормального) в холодный период года, сопровождающемся небольшим спад физиологической активности и падением температуры тела на 1-2 градуса.


Такая особенность дала этим особям некое преимущество в плане более экономного расхода энергии в условиях с меньшим количеством корма. При этом она стала давать настолько большое преимущество в выживаемости, что постепенно в популяции остались только такие мутанты. В дальнейшем отбор по этому признаку продолжился – сон становился все более продолжительным и глубоким, а интенсивность процессов организма уменьшалась все больше. Наконец животные научились обустраивать берлоги. Кстати, эта особенность могла дать значительное преимущество еще и потому, что как раз во время спячки самка рожает детенышей и они в это время находятся в тепле и защите, скрытые от посторонних глаз. В целом эволюция явления зимней спячки продолжалась (а может и продолжается) на протяжении конечно же не меньше, чем нескольких сотен тысяч лет.


За помощь в подготовке статьи редакция Geektimes благодарит:

Брошко Евгения Олеговича, к.б.н., старший преподаватель, кафедра зоологии КГПУ (Криворожский государственный педагогический университет)

Евтушенко Эдуарда Алексеевича, к.б.н., доцент, кафедра ботаники и экологии КГПУ


https://geektimes.ru/post/281386/

Что происходит с организмом медведя во время спячки? Комментарий специалиста Медведи, Спячка, Geektimes, Длиннопост
Показать полностью 1
Медведи Спячка Geektimes Длиннопост
105
651
lookatmysoul
lookatmysoul
8 лет назад

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество⁠⁠

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

Ничего не подозревающие шелкопряды поедают листья шелковицы, опрыснутые двухпроцентной взвесью графена

Тутовый шелкопряд — относительно крупная одомашненная бабочка, которую китайцы как минимум 5000 лет используют для производства шёлка (вероятно, после нескольких столетий или тысячелетий селекции). Долгое время Китай был мировым монополистом, поставляя красивую ткань в Европу по торговому пути, который назвали Шёлковым путём. Потом византийцы выкрали яйца шелкопряда, а затем и европейцы добыли их благодаря крестовым походам.


Впрочем, здесь не о хитрых китайцах с их тысячелетними бизнес-планами, а об уникальном материале, которым является шёлк сам по себе. Это натуральный белок, один из самых прочных в природе. Волокно состоит на 75% из фиброина и на 25% из серицина. Под микроскопом заметны две параллельно идущие нити фиброина с комкообразными налётами серицина. Кроме них, в шёлке присутствуют воски и жиры, а также минеральные вещества. Ширина шёлковой нити 32 мкм, длина может достигать 1,5 километров. Разрывное напряжение около 40 кгс/мм2.


Шёлк — выдающийся материал, и учёные предпринимали неоднократные попытки улучшить шёлковое волокно с помощью различных функциональных компонентов, таких как краски, флуоресцентные протеины, антимикробные средства, наночастицы металлов/полупроводников, а также электропроводящие полимеры.


Для модификации шёлкового волокна применяется две основные стратегии: модификация готовой нити и обогащение материала в процессе его производства (пищеварения) внутри шелкопряда. Первый из этих техпроцессов довольно сложный, многоэтапный и требует применения ядовитых реагентов. Для сравнения, недавно изобретённый способ обогащения шёлка внутри шелкопряда — вполне экологически чистый и относительно простой процесс. Нужно только посадить шелкопрядов на диету.


Учёные с химического факультета и центра нано- и микромеханики Университета Цинхуа (Пекин) предложили новый способ обогащения шёлкового волокна с помощью углеродных нанотрубок и графена.


Углеродные нанотрубки и графен обладают великолепными механическими характеристиками и широко используются в производстве высокопрочных материалов. Было несколько попыток добавить углеродные нанотрубки в шёлк путём модификации готовой нити или добавления в рацион шёлкопрядов. Похожие опыты проводились с пауками. В прошлом эксперименте шелкопрядам скармливали многостенные нанотрубки диаметром около 30 нм. Сейчас китайские учёные логично предположили, что для пищеварительной системы шелкопрядов и внедрения в структуру фиброина гораздо более приемлемыми окажутся не многостенчатые, а одностенчатые нанотрубки диаметром около 1-2 нм. Забегая вперёд, они не ошиблись.


Кроме одностенчатых нанотрубок, учёные решили скормить шелкопрядам ещё и графен, тоже потенциальный упрочнитель. Чтобы скормить материалы животным, учёные применили простой метод: они распылили взвесь с одностенчатыми нанотрубками и графеном на листья шелковицы, которыми питаются шелкопряды — а потом собрали продукт из кокона.


Опыт завершился успехом. Диета шелкопрядов с добавками одностенчатых нанотрубок и графена привела к получению шёлковой нити с улучшенными свойствами. Нить получена естественным натуральным путём из кокона, как и обычная шёлковая нить.


Учёные изучили спектры комбинационного рассеяния шёлкового волокна и экскрементов шелкопрядов — и подтвердили в обоих случаях внедрение углеродных нанотрубок в шёлковое волокно. Они также проверили, насколько изменились свойства волокна после внедрения углеродных нанотрубок.

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

На иллюстрациях показана схема эксперимента, фотографии коконов, полученных после кормления шелкопрядов листьями шелковицы с нанесённой взвесью нанотрубок концентрацией по массе 0,2% и 1,0% и взвесью графена с концентрацией 0,2% и 2,0%. Показаны фотографии со сканирующего электронного микроскопа для каждого образца шёлковой нити и диаграмма с характеристиками растяжимости нити


Другие механические характеристики улучшенных шёлковых волокон показаны в таблице: разрывное напряжение, максимальное растяжение до разрыва и модуль упругости.

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

Как понятно из таблицы, предстоит провести ещё ряд экспериментов, чтобы найти оптимальную концентрацию углеродных нанотрубок и графена в диете шелкопрядов, чтобы у них получались нити большей прочности. Мы видим, что диета с более слабой концентрацией SWNT1-S и GR1-S привела к производству волокна с гораздо лучшими свойствами, чем диета с более высокой концентрацией SWNT2-S и GR2-S.


Неудивительно, что после добавления графена и углеродных нанотрубок шёлковая нить стала проводником электричества. У лучшего образца шёлка с частицами графена электрическая проводимость составила довольно высокие 120 сименс на сантиметр. Такой шёлк можно использовать в электронике. Удобно запитывать носимые гаджеты, вшитые прямо в шёлковую одежду. Собственно, и светящуюся ткань сделать достаточно просто.

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

На фотографиях с просвечивающего электронного микроскопа хорошо видно, что шёлковые волокна с глеродными нанотрубками (посередине) и графеном (внизу) гораздо лучше структурированы, чем обычный шёлк (вверху).

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

Интересный материал, скоптпастил с гиктаймс!

Шелкопряды съели графен и сделали шёлковую нить, которая проводит электричество Geektimes, Шелк, Шелкопряд, Углеродные нанотрубки, Нанотехнологии, Длиннопост

Привет от шелкопрядика :3

(Мистер Баян ругался на это милое создание)

Показать полностью 5
Geektimes Шелк Шелкопряд Углеродные нанотрубки Нанотехнологии Длиннопост
39
173
Dionisnation
Dionisnation
8 лет назад
TECHNO BROTHER

Физики создали первый в мире «кристалл времени»⁠⁠

Физики создали первый в мире «кристалл времени» Копипаста, Geektimes, Кристалл времени, Физика, Теория, Длиннопост
Крис Монро работал с ионной ловушкой схожей конструкции (источник: Hartmut Häffner)

В 2012 году лауреат Нобелевской премии по физике Франк Вилчек предложил необычную идею. Он предположил (и попытался доказать) возможность существования «кристаллов времени». Такие структуры, по словам физика, получают энергию для своего движения из разлома в симметрии времени. Разлом, по словам Вилчека, является некой особой формой вечного движения.


Кристаллы сами по себе очень необычные структуры. Например, кристаллам (тем из них, кристаллическая решетка которых не обладает высшей — кубической — симметрией), присуще свойство анизотропии. Анизотропия кристаллов — это разнородность их физических свойств (упругих, механических, тепловых, электрических, магнитных, оптических и других) по различным направлениям.


Современных физиков интересует не только анизотропия кристаллов, но и их симметрия. Что касается симметрии, то она проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетического спектра электронов кристалла, анализе процессов дифракции рентгеновских лучей, дифракции нейтронов и дифракции электронов в кристаллах с использованием обратного пространства и т. п. Что касается «кристаллов времени», то здесь ученые предположили, что кристаллы симметричны во времени.


Вилчек говорил об этом возможном явлении еще в 2010 году: «Я постоянно думал о классификации кристаллов, а затем я подумал, что ведь можно представить и пространство-времени с этой точки зрения. То есть, если мы думаем о кристаллах в пространстве, логично будет представить кристаллические структуры во времени». В кристаллах атомы занимают стабильную позицию в решетке. А поскольку стабильные объекты остаются неизменными во времени, то существует возможность того, что атомы могут образовывать постоянно повторяющуюся решетку во времени. В исходное положение они возвращаются через дискретный интервал, нарушая временную симметрию. Если кристалл не потребляет и не производит энергию, то такие временные кристаллы являются стабильными, находясь в «основном состоянии». При этом в структуре кристалла происходят циклические изменения, что, с точки зрения физики можно считать вечным движением.


У многих физиков возникали сомнения в справедливости гипотезы возможности существования временных кристаллов. Но те ученые, кто принял ее, стали искать способы проверить справедливость предположения Вилчека. И нашли.

Физики создали первый в мире «кристалл времени» Копипаста, Geektimes, Кристалл времени, Физика, Теория, Длиннопост
Крис Монро [Chris Monroe] из Мэрилендского университета в Колледж-Парке впервые смог создать временной кристалл в своей лаборатории. Его идея состояла в том, чтобы создать квантовую систему в виде группы ионов, расположенных кольцом. При охлаждении кольца, как утверждал Монро (а до него и другие ученые), энергетическое состояние всей системы понизится до минимального уровня. Другими словами, в таких условиях система переходит в фазу «основного состояния». Если временная симметрия нарушена, то кольцо должно меняться во времени. Другими словами, вращаться. Конечно, извлечь энергию этого движения нельзя, поскольку это противоречит закону сохранения энергии. 
Физики создали первый в мире «кристалл времени» Копипаста, Geektimes, Кристалл времени, Физика, Теория, Длиннопост

Все это — теория. На практике реализовать эту задумку сложнее. О намерении создать кольцо из ионов и проверить справедливость гипотезы временных кристаллов несколько лет назад сообщали ученые из Беркли. Они планировали вводить сотни ионов кальция в камеру небольшого размера. Эту камеру нужно окружить электродами и включить ток. Образующееся электрическое поле позволяет загнать ионы в камеру толщиной примерно в 100 микронов. После чего необходимо «откалибровать» частицы для выравнивания поля. Ионы, отталкиваясь друг от друга, сформировали бы кристаллическое кольцо, распределившись равномерно по внешнему краю камеры.


Предполагается, что ионы в такой ловушке будут находиться в возбужденном состоянии, но при помощи лазера их кинетическую энергию будут постепенно урезать. По плану, температуру системы необходимо довести до 1 миллиардной градуса выше нуля. После того, как система достигает основного состояния, ученые планировали включить статическое магнитное поле. Это поле, если гипотеза временных кристаллов верна, должно было заставить ионы вращаться. После возвращения ионов к исходной точке в пределах определенного временного периода ученые зафиксировали бы нарушение временной симметрии.


Монро пошел схожим путем, только для создания кольца он использовал не ионы калия, а ионы иттербия. Сложностью в реализации идеи является то, что предсказать существование частицы в определенное время в определенном месте не представляется возможным. Правда, благодаря андерсоновской локализации появляется исключение в этом правиле, которое можно использовать. Андерсоновская локализация — явление, возникающее при распространении волн в среде с пространственными неоднородностями и состоящее в том, что вследствие многократного рассеяния на неоднородностях и интерференции рассеянных волн становится невозможным распространение бегущих волн; колебания приобретают характер стоячей волны, сконцентрированной (локализованной) в ограниченной области пространства.


Относительно недавно физики изучили группы квантовых частиц, взаимодействующих друг с другом таким образом, что это взаимодействие вынуждает их локализоваться. Монро смог использовать результаты этого исследования для того, чтобы заставить ионы иттербия занять определенные места в определенное время. В результате был создан временной кристалл, и команда Монро, таким образом, доказала возможность нарушения временной симметрии. При изучении свойств временного кристалла оказалось, что значительное изменение частоты возбуждения ионов заставляет кристалл «плавиться». По мнению ученых, создание временного кристалла открывает широкие возможности для квантовых вычислений. Например, на основе временных кристаллов можно создать надежную квантовую память.


Правда, работа Монро и коллег еще требует проверки. Другие команды физиков планируют проверить природу эффекта временных кристаллов, повторив эксперимент. Если это удастся, то гипотеза Франка Вилчека станет теорией, и квантовая физика получит стимул для дальнейшего развития.

Оригинал статьи

Автор - marks

Показать полностью 3
Копипаста Geektimes Кристалл времени Физика Теория Длиннопост
37
255
Swan120
Swan120
8 лет назад

Почему до сих пор нет аккумуляторов нового поколения?⁠⁠

Буквально каждый месяц в течение многих лет мы слышим о том, что какая-то компания разработала аккумулятор нового типа. В новостях такого рода говорится обычно, что вскоре новый аккумулятор попадет на рынок, а электронные устройства с такими батареями смогут работать едва ли не годы. В начале этого года представители Министерства энергетики США даже заявили, что «найден святой Грааль индустрии аккумуляторов».


К сожалению, на самом деле ничего не меняется. Литий-ионные батареи остаются прежними, продолжительность работы умных часов, телефонов, планшетов и ноутбуков также почти не изменяется. А ведь создать аккумуляторы нового поколения пытаются многие стартапы. Часть добивается каких-то результатов, публикует очередную новость. Затем такой стартап обычно куда-то исчезает. Совпадение или заговор? Скорее первое, чем последнее.


Илон Маск, для которого жизненно важно создать более емкий аккумулятор, пока что занимается лишь оптимизацией существующих технологий производства литий-ионных батарей. Благодаря этому удается увеличить емкость таких аккумуляторов на определенное количество процентов. Но есть предел всему, и оптимизации аккумуляторов в том числе.


Многие исследователи считают, что для получения аккумуляторов нового поколения нужно использовать новые материалы и новые химические процессы. Некоторых успехов удалось добиться выходцам из MIT, основавшим компанию SolidEnergy. Это еще один стартап, который занимается разработкой литий-металлических батарей, емкость которых в два раза выше емкости аналогичных по размеру обычных аккумуляторов. По словам представителей компании, технология готова к коммерческому использованию.


В таких аккумуляторах используется металлический анод, вместо графитового. Толщина слоя лития здесь уменьшена примерно в пять раз. Между металлическим анодом и катодом находится гибридный электролит, в состав его входят только негорючие вещества. По словам представителей компании, такие батареи не только более емкие, чем традиционные аккумуляторы, но и более безопасные.

Почему до сих пор нет аккумуляторов нового поколения? Аккумулятор, Солнечные панели, Солнечная энергия, Заряд, Электричество, Электрический ток, Geektimes, Длиннопост

Правда, эта компания занимается разработкой аккумуляторов с 2012 года. Ранее она также заявляла о возможности начала коммерческого использования своих батарей. Сейчас руководитель SolidEnergy заявил о том, что в ноябре компания представит первый аккумулятор для дронов. В 2017 году планируется наладить массовый выпуск батарей для телефонов и носимых устройств. Возможно, так и будет, но SolidEnergy далеко не первый стартап, который рассказывает о том, что аккумуляторы нового типа уже выходят на рынок.


Проблема индустрии еще и в том, что сейчас, как и говорилось выше, исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно дают деньги на новые проекты.


А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн», — говорит Гред Седер, профессор материаловедения из Калифорнийского университета (Беркли). Ученый возглавляет группу исследователей, которые пытаются найти новые химические реакции, которые подошли бы для использования в новых аккумуляторах. И даже, если бы перспективный аккумулятор был бы создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученый говорит, что наладить промышленную линию стоимостью в $500 млн сложно, особенно, если бюджет на год составляет $5 млн.


И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.


Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у SolidEnergy все же получится разорвать порочный круг.

Показать полностью 1
Аккумулятор Солнечные панели Солнечная энергия Заряд Электричество Электрический ток Geektimes Длиннопост
80
10
thekrablik
8 лет назад

Пора начать действовать⁠⁠

Пора начать действовать
Geektimes Комментарии
0
6
DELETED
8 лет назад

Обстоятельства⁠⁠

С geektimes:


AAA: «насколько изменяется восприятие размеров и расстояния до предмета, если наклониться и посмотреть на него в просвет между ногами»

Вот это, кстати, как-то замечал, правда не помню обстоятельств.


BBB: Всё ты помнишь)

Geektimes Текст Bash im
2
9
DELETED
8 лет назад

Выше 900°C температура обычно не поднимается⁠⁠

Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост

Kак взрываются литий-ионные аккумуляторы?

Что происходит внутри аккумулятора во время термического разгона и почему возникает самовозгорание?

Литий-ионные аккумуляторы состоят из анода и катода, разделённых пористым полимерным сепаратором. Активным материалом катода чаще всего являются оксиды переходных металлов со встроенными в кристалл ионами лития. В аноде обычно используется графит. Электролит, которым залита электрохимическая ячейка, представляет собой органический раствор солей лития. При первой зарядке, производимой фирмой-изготовителем, при встраивании лития в анод на электродах (особенно на аноде) образуется защитный ион-проводящий слой (SEI), состоящий из разложившегося электролита. Этот слой защищает электроды от паразитических реакций с электролитом.
Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост
Чаще всего причиной самовозгорания аккумуляторов является короткое замыкание внутри электрохимической ячейки. Электрический контакт между анодом и катодом может возникнуть по многим причинам. Это может быть, например, механическое повреждение ячейки. Ещё внутреннее короткое замыкание возникает из-за нарушения технологии производства при неровной нарезке электродов или попадании металлических частиц между анодом и катодом, что ведёт ко повреждению пористого сепаратора. Также причиной внутреннего короткого замыкания может быть «прорастание» цепочек металлического лития (дендритов) через сепаратор. Такой эффект возникает, если ионы лития не успевают встроиться в кристалл анода при слишком быстрой зарядке или низкой температуре, а также если ёмкость активного материала катода превышает ёмкость анода, в результате чего на поверхности анода появляются микроскопические отложения, которые постепенно растут.
Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост

Итак, после того, как произошло короткое замыкание, аккумулятор начинает нагреваться. Когда температура достигает 70-90 °C, ион-проводящий защитный слой на аноде начинает разлагаться. А дальше литий, встроенный в анод, вступает в реакцию с электролитом, выделяя летучие углеводороды: этан, метан, этилен и т.д. Но, несмотря на наличие такой взрывоопасной смеси, возгорания не происходит, так как в системе пока нет кислорода.


Так как реакции с электролитом экзотермические, температура и давление внутри аккумулятора продолжают повышаться. Когда температура достигает 180-200 °C, материал катода, обычно представляющий из себя оксид переходных металлов со встроенным в кристалл литием, вступает в реакцию диспропорционирования и выделяет кислород. Вот тут-то и происходит самовозгорание и ещё более резкий скачок температуры. Параллельно идёт термическое разложение электролита (200-300 °C), также выделяющее тепло. Выглядит это так:

Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост

И, в конце концов, в реакцию с электролитом (если он ещё остался) вступает графит, а когда температура достигает 660 °C, плавится алюминиевый токоприёмник. Выше 900°C температура обычно не поднимается, так как разлагаться уже нечему.


Помимо внутреннего короткого замыкания существуют и другие причины самовозгорания: перегрев аккумулятора, неправильная зарядка/разрядка (превышение максимально допустимого напряжения, зарядка на высоких токах, слишком глубокая разрядка), и т.д. Но все эти причины приводят к одному результату: термическому разгону и разложению электролита при взаимодействии с электродами. Различаются только порядки вышеописанных реакций и их скорость.


Естественно, производители аккумуляторов предусмотрели системы защиты от самовозгорания, и чем больше и мощнее аккумулятор, тем больше степеней защиты он содержит. Одним из видов защиты от небольшого короткого замыкания является пористый сепаратор, который при локальном повышении температуры становится непроницаемым и препятствует, к примеру, дальнейшему росту дендритов внутри аккумулятора. Но иногда температура повышается слишком быстро, и сепаратор просто плавится, в результате чего анод соприкасается с катодом.


Также аккумуляторы оборудованы предохранителями и клапанами, которые при повышении давления и температуры внутри либо отключают электроды от цепи, либо способствуют выходу наружу скопившегося газа. В последнем случае, так как газы легковоспламеняющиеся, при контакте с кислородом снаружи возникает пламя. Пример действия защитных клапанов можно было наблюдать при аварии с участием автомобиля Тесла Model S, где аккумулятор был пробит крупным металлическим предметом. Так как в Тесле клапаны аккумуляторов были направлены вниз на асфальт и отдельные блоки были хорошо изолированы друг от друга, сгорела лишь передняя часть аккумулятора (как сказал Элон Маск, если бы тот же металлический предмет пробил бак с бензином, машины бы сгорела целиком).

Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост
Кстати, термическая изоляция отдельных блоков в крупном аккумуляторе очень важна. Если в вышеупомянутом примере аккумулятор Теслы не загорелся полностью из-за хорошей термоизоляции, то в случае аккумулятора на борту Боинга 787 самовозгорание произошло из-за того, что блоки были недостаточно изолированы друг от друга, что привело к перегреву всей системы.
Выше 900°C температура обычно не поднимается Литий-ионные аккумуляторы, Geektimes, Возгорание, Длиннопост

Как видно, самый опасный компонент аккумулятора- электролит, который разлагается на легковоспламеняющиеся компоненты при повышении температуры. На сегодняшний день учёные пытаются найти более стабильные альтернативы: ионные жидкости, полимерные электролиты, твёрдотельные керамические электролиты и т.д.

Ссылки: 1, 2, 3.

Показать полностью 5
Литий-ионные аккумуляторы Geektimes Возгорание Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии