Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
 Что обсуждали люди в 2024 году? Самое время вспомнить — через виммельбух Пикабу «Спрятано в 2024»! Печенька облегчит поиск предметов.

Спрятано в 2024

Поиск предметов, Казуальные

Играть

Топ прошлой недели

  • CharlotteLink CharlotteLink 1 пост
  • Syslikagronom Syslikagronom 7 постов
  • BydniKydrashki BydniKydrashki 7 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Новости Пикабу Помощь Кодекс Пикабу Реклама О компании
Команда Пикабу Награды Контакты О проекте Зал славы
Промокоды Скидки Работа Курсы Блоги
Купоны Biggeek Купоны AliExpress Купоны М.Видео Купоны YandexTravel Купоны Lamoda
Мобильное приложение

Суммы

6 постов сначала свежее
mezyukho
mezyukho
Мезюхо Иван Александрович - политолог; - председатель Крымской региональной общественной организации «Центр политического просвещения».
Хроники СВО
10 дней назад

Зеленский доигрался: Сумская область Украины может стать буферной зоной⁠⁠1

Мой комментарий изданию RT на эту тему:
⬇️⬇️⬇️

Политолог связал визит Зеленского в ФРГ с успехами ВС России в Сумской области

Политолог Иван Мезюхо в беседе с RT отметил, что сегодня Владимир Зеленский «не просто так побежал на аудиенцию к Фридриху Мерцу».

«Зеленский, безусловно, переживает, что в обозримой перспективе Сумская область Украины может стать буферной зоной для обеспечения безопасности регионов России, в первую очередь Курской области», — считает собеседник RT.

Именно с успехами ВС России на Сумском направлении политолог связал недавние заявления канцлера Германии.

«Во многом именно с этим могут быть связаны сначала заявления Мерца о предоставлении права на использование Taurus для ударов вглубь территории России, а потом его комментарии о поддержке производства дальнобойного оружия непосредственно на территории, которую контролируют органы управления киевской клики», — добавил Мезюхо.

По его словам, Европа стала ещё более агрессивной, чем в своё время бывший президент США Джо Байден.

«Она (Европа. — RT) пытается сделать всё возможное для того, чтобы Киев как можно дольше мог продержаться на поле боя. И главное для них — эскалация до самого конца, ровно до тех пор, пока хватает человеческих ресурсов на Украине», — заключил собеседник RT.

Ранее стало известно, что Владимир Зеленский прибыл в Берлин к немецкому канцлеру Фридриху Мерцу.

Политика Владимир Зеленский Новости Спецоперация Фридрих Мерц Taurus Германия Суммы Сумская область Курск Курская область Буферная зона Текст
15
408
manonthemoon
manonthemoon
1 месяц назад

Что там по Сумам?⁠⁠

Мэр Конотопа Артём Семенихин обратился к главе Сумской ОВА:

«Случайно ракеты так залетают, да? У тебя есть время до 18:00, чтобы уйти в отставку и встать на колени перед убитыми детьми!

Артюх и Красношапка — соучастники этого преступления! Или я расскажу, как всё было на самом деле».


Пруф ФБ https://www.facebook.com/Semenikhin

Показать полностью
Россия и Украина Украина Суммы Политика Видео Facebook (ссылка)
138
11
StasTatarski
StasTatarski
3 года назад

О сумме обратных квадратов и ещё одной специальной функции⁠⁠

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост
"Перед математикой помолимся!
Отче Сергий спаси и помилуй нас
И прости нам математические прегрешения наше!" 

Введение

В прошлом посте я рассказал о специальных функциях и закончил на сумме выше, так её и не посчитав. Сегодня я исправлю это недоразумение и заодно расскажу об ещё одной специальной функции, которая называется дилогарифм.

Почему этот ряд вообще сходится?

Забавно, что если убрать квадраты в знаменателях:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

то сумма не будет сходиться (больше любого числа или равна бесконечности). Последнее равенство означает, что сумма при больших n "ведет"(мало отличается) себя как логарифм, но доказывать я это не буду.

Однако сумма обратных квадратов -- сходиться.

Для того, чтобы показать, сто наша сумма сходится оценим ее сверху другим рядом, который сходится:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Видно, что все слагаемые нашей суммы, кроме первого меньше, чем у суммы справа.

Покажем, что ряд справа -- сходится. Для этого распишем каждое слагаемое, как сумму:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Тогда наша ряд слева принимает вид:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Видно, что эта сумма сходится. Так как сумма обратных квадратов не превосходит 2, то она сходится.

Дилогарифм

Для начала вспомним об одном важном свойстве логарифма, а именно его разложении в ряд:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

В этом смысле дилогарифм похож на обычный логарифм. Он определяется как:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

(это равенство, как и равенство выше верно также для комплексных z)

График для вещественных x выглядит следующим образом:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Заметим, что значение дилогарифма в 1 -- это в точности сумма нашего ряда:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Пора считать!

Для начала докажем одно важное свойство дилогарифма, а именно следующую формулу:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Для этого рассмотрим следующую производную:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Посчитаем то что справа:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

А затем проинтегрируем:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Найдем C, подставив z=1:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Перенесем Дилогарифм от -z налево и получим нашу формулу:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Ура! Теперь дело за малым. Подставим z = -1:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

(здесь все законно, так как комплексный логарифм определен и при отрицательных z)

Теперь надо вычислить(или выразить через дилогарифм от 1) дилогарифм от -1.

Следующие выкладки дают нам, то что нужно:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

(важно отметить, что так как ряд сходиться абсолютно, то мы вправе переставлять и группировать слагаемые)

Подставим в нашу формулу и получим:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Также в процессе мы вычислили ещё одну сумму, а именно:

О сумме обратных квадратов и ещё одной специальной функции Математика, Образование, Числовые ряды, Суммы, Длиннопост

Примечание: подробнее про дилогарифм написано в книге "Leonard Lewin - Polylogarithms and associated functions (1981, North Holland )".

Показать полностью 17
[моё] Математика Образование Числовые ряды Суммы Длиннопост
10
1638
XTakeshi
3 года назад

Вдруг найдётся⁠⁠

Коллега нашёл следующий пост в сети:


Меня порадовала и тронула запись в Твиттере американского физика и гейм-дизайнера, создателя XBox'а Шеймуса Блэкли о том, как он любит и ценит (в английском переводе) классический справочник "Таблицы интегралов, сумм, рядов и произведений" И.М.Рыжика и И.С.Градштейна.

Я узнал из нее, что Рыжик погиб на войне в 1941 году, и справочник был издан посмертно под его именем в 1943-м. Градштейн расширил и переработал его для третьего издания в 1951-м, и умер во время подготовки четвертого, которое закончили еще два редактора, Геронимус и Цейтлин. Кстати, об этом справочнике есть подробная запись в английской Википедии, и ничего нет в русской.

Блэкли пишет: "Я так и не смог найти ни одной фотографии Рыжика или Градштейна, но хочу послать в пространство выражение своей любви к этой книге и благодарности ее создателям. Может, где-то там, в конечном пределе безумного и безвестного интеграла, они услышат это".

Может, мы можем помочь ему как-то? Неужели действительно невозможно найти фотографии этих математиков?

https://twitter.com/SeamusBlackley/status/140351683198645452...

Вдруг найдётся Математика, Ряды, Суммы, Интеграл, Произведение, Справочник

Ссылка на источник: https://t.me/avvablog/946

Показать полностью 1
Математика Ряды Суммы Интеграл Произведение Справочник
83
4624
Batya121
Batya121
4 года назад
Специфический юмор

Бизнес по Пикабушному⁠⁠

Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Бизнес по Пикабушному Втираешь, Дичь, Донаты на Пикабу, Бизнес, Раскадровка, Юмор, Суммы, Накопления, Ожидание и реальность, Длиннопост
Показать полностью 8
[моё] Втираешь Дичь Донаты на Пикабу Бизнес Раскадровка Юмор Суммы Накопления Ожидание и реальность Длиннопост
305
kostass
11 лет назад

Есть кто из Сумм (Украина)? Хотите помочь, то " +" если нет то "-"⁠⁠

Будем с друзьями проездом в Суммах, 10 августа.
Есть люди у которых свободный день, показать город, буквально 3-4 часика.

Держим дорогу из Харькова в Путивль(Музей Партизанской Славы)
И за одно катаемся по городам.

А вообще кто за создание раздела "Покатушки?"
Что бы одни пикабушники ездили друг другу в гости, покататься по своей стране).
Часто нужны попутчики которые желают попутишествовать.
Я готов начать, представляю (Украина- Харьков)
Путешествия Харьков Суммы
8
Посты не найдены
О Нас
О Пикабу
Контакты
Реклама
Сообщить об ошибке
Сообщить о нарушении законодательства
Отзывы и предложения
Новости Пикабу
RSS
Информация
Помощь
Кодекс Пикабу
Награды
Команда Пикабу
Бан-лист
Конфиденциальность
Правила соцсети
О рекомендациях
Наши проекты
Блоги
Работа
Промокоды
Игры
Скидки
Курсы
Зал славы
Mobile
Мобильное приложение
Партнёры
Промокоды Biggeek
Промокоды Маркет Деливери
Промокоды Яндекс Путешествия
Промокоды М.Видео
Промокоды в Ленте Онлайн
Промокоды Тефаль
Промокоды Сбермаркет
Промокоды Спортмастер
Постила
Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии