Привет, дорогие подписчики! Кто не знает, или забыл - меня зовут Илья, я инженер строительного контроля, специалист по техническому обследованию загородных домов и строитель каркасников. Пишу о своей работе здесь. Немного выпал из потока постов в связи с массой интересных событий, развернувшихся вокруг меня с наступлением строительного и огородного сезона. Накопилось много интересного материала, но начну с ответа на один вызов, который был брошен мне в комментариях к одному из предыдущих постов, где я написал, что вручную считаю стропила и другие конструктивные элементы и тут же получил несколько саркастических замечаний и утверждений, что это невозможно. Я пообещал просчитать в течение недели, один из комментирующих заметил, что из этого выйдет хорошая статья, но тут, как в рассказе Аверченко "Неизлечимые" - и всё заверте... Короче, я снова здесь, я в бархатных штанах и выполняю своё обещание. Лезем на крышу!
Привет, душнила! На фото стоп-кадр, где Спай быстро перемещает уровень, поэтому пузырьки сместились в противоположную перемещению сторону.
По роду своей деятельности (а кто забыл, я инженер строительного контроля и специалист по техническому обследованию зданий) мне приходится часто осматривать чердаки домов, стропильные системы и кровельные покрытия. После 10 лет практики я практически наверняка отличаю расчётную кровлю, построенную по проекту, от фантазийной, сделанной "из головы", по известному принципу "мы всегда так строим".
Наиболее ярко работала фантазия строителей домов в 80-90-х годах, когда материалы достать было сложно. Как правило, в качестве стропил использовались брёвна или тёсанные жерди, а для обрешётки использовали также жерди, горбыль или, в лучшем случае, необрезную доску.
Пример кровли дома советской постройки.
Естественно, тогда никто не задумывался о просчёте нагрузок. Усиливали максимально, чем только могли. И верили в лучшее. Но сегодня загородное домостроение, к нашему всеобщему удовольствию, шагнуло далеко вперёд, предоставляя нам широкий выбор как конструкций, так и строительных материалов для кровли. Но у многообразия материалов есть и негативная сторона - у строителей появляется соблазн "пройти на тоненького", то есть, выполнить кровлю с максимальной экономией, обеспечив её соответствие строительным нормам. Или не обеспечив их вообще. Ну, или фантазийно слепить кровлю из того, что оказалось под рукой. Заказчик-то всё равно не разбирается!
Чтобы не оказаться таким заказчиком, давайте разберёмся однажды, чтобы разбираться и впредь. А то, как выяснилось, даже инженеры-строители у нас не умеют считать без программ и удивляются, когда видят человека, считающего вручную.
Далее будет много формул, но тем, кто решил освоить строительные расчёты, я могу сказать только то, что сказал Черчилль в своём знаменитом "Обращении к нации":
Нам предстоят кровь, тяжёлый труд, слёзы и пот. Больше ничего обещать вам не могу.
Итак, для примера возьмём традиционную конструкцию двускатной кровли с деревянными стропилами (потому, что стропила бывают и из других материалов). И максимально её упростим (не будем считать свесы, выносы и всякие кровельные элементы).
Исходные данные у нас будут таковы:
Локация объекта (нужна для понимания ветровых и снеговых нагрузок) - Подмосковье;
Ширина пролёта (перекрытия) - 6 метров;
Длина основания (перекрытия) - 9 метров;
Угол кровли - 30 градусов;
Высота стропильной фермы (от перекрытия чердака до конька) - 175 см;
Длина стропила (безопорный пролёт) - 347 см;
Шаг стропил - 60 см;
Материал покрытия кровли - металлочерепица.
Для определения нагрузок на крышу будем использовать действующие строительные нормы, а именно, актуальный СП "Нагрузки и воздействия".
Несмотря на то, что крыша находится на вершине строения, она испытывает многочисленные нагрузки. Помимо ветровой нагрузки, которая действует на крышу сбоку или снизу (в зависимости от угла её наклона), пытаясь либо опрокинуть, либо оторвать, на неё также воздействуют снеговые нагрузки (они давят сверху) и её собственный вес, складывающийся из веса стропил, обрешётки, кровельного покрытия и, если кровля утеплённая, утеплителя. Всё это нам необходимо учесть в расчётах.
Наиболее значимая из этих нагрузок - снеговая. Нормативный вес снегового покрова (то есть, наши предположения о количестве выпадающего снега на 1 м2) зависит от региона. Логично, что в Сибири выпадает больше снега, чем в Сахаре, поэтому нагрузка будет выше. Зная регион, нам не нужно считать этот вес, всё уже украдено посчитано до нас - в СП "Нагрузки и воздействия" территория России делится на 8 снеговых районов, с весом выпадающего снега от 80 до 560 кг снега на м2.
Нормативная снеговая нагрузка напрямую зависит от нормативного веса снега и угла наклона кровли. Она высчитывается по формуле:
S = Sg * μ, где
S - нормативная величина снеговой нагрузки
Sg - нормативный вес снегового покрова на 1 м² горизонтальной поверхности земли, кПа
μ - поправочный коэффициент, зависящий от угла наклона кровли
Подмосковье относится к 3 снеговому району, а значит Sg по таблице у нас будет 1,5 кПа. Ура, считать не надо, спасибо дядям метеорологам и инженерам. А, не, надо. Что это за кПа? Давайте пересчитаем их в кг/м2, чтобы было понятно, как всё это давит на площадь.
1 кг/м2 = 0.00980665 килоПаскалей
1,5 КПа = 153 кг/м2
μ (мю) - это поправочный коэффициент, который принимается в зависимости от угла наклона ската кровли.
Угол меньше или равен 30° - μ = 1;
считается, что снега будет столько же, сколько на земле. Хотя, фактически это сильно зависит от покрытия. Например, профнастил или кликфальц - скользкие и не держат на себе снег, а гибкая черепица или шифер - шершавые и держат даже при большем наклоне.
Угол больше или равен 60° - μ = 0;
считается, что снег задерживаться не будет. Но, см. выше, возможны варианты. Особенно на сложных кровель с ендовами, врезными кукушками, примыканиями и прочим крутым и потенциально проблемным обвесом. По моему хотению (и щучьему велению) сегодня у нас просто два ската и мы про это говорить не будем, а то все вместе взорвём себе мозг, а хейтеры в каментах поедут крышей во всех смыслах. Ибо, есть варианты кровель, например купольные, которые требуют вот таких расчётов:
Давайте в ужасе сбежим к нашей простой кровле и подумаем, что делать, если её угол, как Наташа Ростова из анекдота про Ржевского, оказался одной ногой в Москве, а другой в Петербурге? То есть, между 30 и 60 градусами? Придётся высчитывать Бологое μ по формуле:
μ = 0,033*(60-a), где a - это угол наклона кровли
Но в нашем случае угол наклона составляет 30° и мы просто берём нормативный коэффициент, даже без вышеуказанных нехитрых расчётов.
Итак, нормативная снеговая нагрузка у нас составляет: S = 1,5*1 = 1,5 кПа = 153 кг/м2.
Итак, мы знаем, что в среднем, нормативная снеговая нагрузка для нашей кровли с углом наклона 30 градусов и расположением в Подмосковье составит 153 кг/м2. Но можем ли мы ориентироваться на среднее значение? Конечно же да! - скажет вам экономный прораб. Конечно же - нет, ответит СП "Нагрузки и воздействия". Во-первых, снега может выпасть больше нормы. Во-вторых, он может лежать неравномерно, например, отсырев и примёрзнув на части кровли. Поэтому, нам нужно определить расчётную снеговую нагрузку, которая представляет собой нормативную, но умноженную на коэффициент надёжности.
Согласно СП "Нагрузки и воздействия":
4.2 Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке , соответствующий рассматриваемому предельному состоянию.
3.2 коэффициент надежности по нагрузке: Коэффициент, учитывающий в условиях нормальной эксплуатации сооружений возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от нормативных значений.
Согласно таблице 7.1. вышеуказанного СП, коэффициент надёжности для веса деревянных строительных конструкций принимается за 1,1. Значит? S = 153 * 1,1 = 168,3 кг/м2.
Вроде бы, добавилось 10%. Но снеговая нагрузка может разниться от розы ветров - на подветренной стороне может скапливаться в 2 раза больше снега, чем с наветренной. Поэтому, нормальными проектировщиками при расчётах берётся максимум, чтобы хозяин внезапно не проснулся от свежести морозного воздуха, обнаружив над собой звёздное небо и незапланированный "второй свет". Ну, или не попал на тот свет в результате воздействия сугроба, перемешанного с обломками стропил и кусками металлочерепицы.
Теперь мы можем вычислить снеговую нагрузку на всю площадь кровли, это хорошо. Но пока не знаем, какая ветровая нагрузка будет воздействовать на нашу кровлю. Давайте считать.
Ветровая нагрузка считается по формуле:
W - общая ветровая нагрузка;
Wm - средняя ветровая нагрузка;
Wp - пульсационная ветровая нагрузка.
Последняя это как раз та, которую создавал волк в сказке про трёх поросят, сдувая домики, построенные нерадивыми прорабами, по свински разворовавшими бюджет.
Сейчас нам предстоит вычислить все вышеуказанные значения. Это несложно.
Считаем среднюю ветровую нагрузку:
Wm = Wо * k(Ze) * c, где:
Wo - нормативная ветровая нагрузка из таблицы;
k - коэффициент изменения ветрового давления на высоте Ze;
c - аэродинамический коэффициент.
Самое простое - Wo. Открываем СП и видим, что значение Wo для I ветрового района, к которому относится Подмосковье, равно 0,23 кПа:
Теперь нам нужно посчитать значения для k, Ze и c. Тут просто приведу скрин из СП, т.к. на пальцах не объяснишь, чистая математика с геометрией:
Итак, допустим, наш домик находится в сельской местности без высоких препятствий, а значит, он относится к категории А.
Пусть он стоит боком к ветру и длина обращённой к ветру стороны равна 9 метров, а высота кровли в коньке 6 метров. Значит, h у нас меньше d и Ze = h, то есть 6 метров.
Смотрим таблицу 11.2 и видим, что наш коэффициент для местности А, при высоте здания больше 5, но менее 10 метров, равен 0,75.
Аэродинамический коэффициент берём из Приложения B, там есть конкретный рисунок для двускатных кровель, где можно выбрать наветренную и подветренную сторону и определить максимальное ветровое давление в зависимости от угла наклона и высоты кровли.
Мне выпало 0,7 кПа, на наветренной стороне при угле наклона 30 градусов.
Считаем среднюю ветровую нагрузку: Wm = 0,23 * 0,75 * 0,7 = 0,12 кПа или 12 кг/м2.
Теперь нам нужно посчитать пульсационную ветровую нагрузку. Как правило, многие проектировщики не занимаются сложными расчётами и просто считают пропорцией от средней ветровой или берут из справочников, но мы же не слабаки, поэтому продолжаем дальше.
Считаем пульсационную ветровую нагрузку
Wm - это средняя ветровая нагрузка, мы её уже посчитали;
ζ(Ze) - коэффициент пульсации давления ветра, принимаемый по Таблице 11.4
ν - коэффициент пространственной корреляции пульсаций давления ветра.
По табличке у нас выходит, что ζ(Ze) = 0,85
Итак, нам осталось найти коэффициент пространственной кореляции пульсаций давления ветра, зависит он от габаритных размеров здания/конструкции, в нашем случае конструкция это одна сторона кровли, через которую ветер воздействует на стропильную систему.
До этого всё было просто, а вот сейчас будет ещё легче! (троллфейс) Как вы уже прочувствовали, ветер это такая переменчивая штука, что точно учесть все параметры довольно сложно. Т. к. сила его воздействия на здание зависит от множества факторов, в которые входят как особенности конструкции здания, так и направление и сила самого ветра. Чем больше факторов мы учитываем, тем точнее можем рассчитать силу воздействия. Поэтому, давайте не будем лениться и округлять, доведём дело до конца.
11.1.11 Коэффициент пространственной корреляции пульсаций давления v следует определять для расчетной поверхности сооружения или отдельной конструкции, для которой учитывается корреляция пульсаций.
Расчетная поверхность включает в себя те части наветренных и подветренных поверхностей, боковых стен, кровли и подобных конструкций, с которых давление ветра передается на рассчитываемый элемент сооружения.
Если расчетная поверхность близка к прямоугольнику, ориентированному так, что его стороны параллельны основным осям (рисунок 11.2), то коэффициент v следует определять по таблице 11.6 в зависимости от параметров r и c, принимаемых по таблице 11.7.
Рисунок 11.2. Основная система координат для определения коэффициента пространственной корреляции.
На этом рисунке нам нужно выбрать сторону, в которую у нас будет дуть ветер. Выбираем заштрихованную, с координатами z0y. И смотрим, что говорит таблица 11.7 про параметры p и x.
Выходит, что для следующей таблице нам надо взять значения b и h - это длина и ширина кровли.
Длина у нас 9 метров, ширина 3,47. Таких значений в таблице нет, берём приближённые - 10 и 5. И получаем значение коэффициента 0,85. Забавно, что он совпал с коэффициентом изменения ветрового давления, но это случайность. Кстати, в советских руководствах по расчёту ветрового давления часто советуют просто не морочиться с v-коэффициентом и принять его за 1 или за 0,5, в зависимости от высоты здания.
Wp = 0,12 * 0,85 * 0,85 = 0,08 кПа или 8 кг/м2
Самое тяжёлое позади, но не расслабляемся! Считаем финалочку. У нас есть Wm и Wp, теперь считаем общую ветровую нагрузку их простым сложением:
W = 12 + 8 = 20 кг/м2 - неплохая кровля получается, ветроустойчивая. Но это ещё не всё. Нам обязательно нужно учесть коэффициент надёжности по ветровой нагрузке. Ибо сказано:
11.1.12 Коэффициент надежности по ветровой нагрузке следует принимать равным 1,4.
А значит, 20 * 1,4 = 28 кг/м2.
Теперь мы знаем, что давит на нашу кровлю, но пока не знаем веса самой кровли. Давайте считать дальше!
Считаем общий вес кровли.
Итак, металлочерепица весит 5 кг на м2.
Площадь кровельного покрытия у нас равна 3,4 * 9 *2 = 62,46 м2.
Умножаем на вес квадрата кровли и получаем 312,3 кг - это железяки.
Теперь пришла очередь стропильной системы. Тут есть свои шаблоны, то есть, можно сразу взять готовый расчёт, типа - 20 кг на квадрат кровли. Но мы за точность измерений. Ведь именно она позволяет нам экономить. Доска из сосны камерной сушки 6000х195х45 весит 22 кг. У нас же длина стропила 3470 мм, посчитаем вес пропорцией. У меня вышло 12,72 на одно стропило. А сколько их, если они стоят на 9 метрах через 60 см? 15 штук на сторону, всего 30.
Итого: 450 кг вес стропил.
Теперь прикинем вес обрёшётки. Как пишет в своей инструкции производитель металлочерепицы Grand Line:
При шаге стропил 600 - 900мм в качестве обрешетки, используйте доску сечением 25х100 мм. Перед монтажом обрешетки просушите ее и обработайте антипиреновыми и антисептическими средствами. Согласно СНиП II-25-80 «Деревянные конструкции», максимальная влажность пиломатериалов не должна составлять более 20%.
Монитровать её придётся с шагом 300 мм. Значит, на сторону 3,74 у нас ляжет 12 досок. Добавим конёк, добавим усиление под снегозадержатели, пусть 15 досок будет. По 9 метров. Считаем. Одна 6-метровая доска весит 8 кг. А нам нужно 9 метров на сторону. Значит, 12 кг. Умножаем на количество досок - 30 * 12 = 360 кг.
Теперь считаем общий вес кровли: 312,3 + 450 + 360 = 1 122,3 кг.
Делим на площадь кровли и получаем нагрузку от собственного веса кровли:
1 122,3 / 67,32 = 16,67 кг/м2.
Я не учитывал такие элементы как затяжки, мембраны, всяческие кровельные элементы, выносы и свесы, но сейчас суть не в этом, важно, чтобы вы поняли принцип.
Теперь суммируем все нагрузки, которые мы рассчитали - снеговую, ветровую и веса кровли с элементами стропильной системы:
168,3 кг/м2 (снег) + 28 кг/м2 (ветер) + 16,67 кг/м2 (собственный вес конструкции) = 212,97 кг/м2
Итак, суммарная нагрузка на м2 кровли Q = 212,97 кг
Теперь мы можем посчитать распределённую нагрузку, которая действует на каждый погонный метр безопорного пролёта стропила. Это произведение расстояния (шага) между стропилами и суммарной нагрузки на м2 кровли.
Qr = A * Q
Qr = 0,6 м * 212,97 кг/м2 = 127,78 кг/м
Распределённая нагрузка на погонный метр кровли = 127,78 кг
Теперь посчитаем, какие стропила выдержат эту нагрузку. И выдержат ли наши.
Расчёт сечения стропильной ноги
Подсчитаем, соответствуют ли наши стропила требованиям конструктивной надёжности по ширине доски, взяв стандартную толщину 45 мм. Для этого определим минимальную ширину стропила.
Если угол крыши < 30°, стропила рассматриваются как изгибаемые
H ≥ 8,6 * Lmax * √(Qr / (B * Rизг))
H ≥ 8,6 x Lm x √(N / (B x Rизг))
Если уклон крыши > 30°, стропила изгибаемо-сжатые
H ≥ 9,5 * Lmax * √(Qr / (B * Rизг))
где:
H - ширина стропила в см;
Lmax - максимальная безопорная длина стропила, м;
B - толщина доски в см;
Rизг - сопротивление на изгиб (для сосны второго сорта = 130 кг/см2).
Считаем для нашего случая: H = 8,6 * 3,47 * √(127,78 / (4,5 * 130)) = 14,02 см или 140 мм.
То есть, нашей ширины стропил в 195 мм хватает с лихвой.
Считаем соответствие прогиба стропил под нагрузкой строительным нормам
Согласно Таблице 19, СП 64.13330 "Деревянные конструкции", нормируемый прогиб должен составлять не более L/200, где L это безопорный пролёт стропила. Проверить это можно через неравенство:
3,125 * Qr * Lmax³ / (B * H³) ≤ 1
где:
Qr - найденная нами нагрузка на погонный метр;
Lmax - безопорный пролёт стропила, в метрах;
B - толщина доски в см;
H - высота сечения доски в см.
Считаем: 3,125 * 127,78 * 3,47³ / (4,5 * 19,5³ ) = 0,5 - значение меньше единицы, условие выполняется. В принципе, на этом этапе можно поэкспериментировать с толщиной и шириной стропильной ноги, уменьшая размеры до момента, пока значение не станет близким к единице. таким образом можно соблюсти нормы и при этом не перерасходовать бюджет на избыточные запасы прочности.
Уж не знаю, насколько хорошей вышла эта статья. Понятно, что этот набор формул ориентирован на узкий круг желающих разобраться досконально. Но как минимум, у нас будет отличная шпаргалка, к которой всегда можно вернуться при необходимости.
Как обычно, на любые вопросы, которые не требуют больших временных затрат, расчётов или выезда на объект я отвечаю бесплатно в каментах или лично - мои контакты в профиле Пикабу. Кто не видит профиль или кому удобнее обратиться сразу напрямую - пишите в телеграм: karkasovo (это не канал, а мой контакт).
Аудит проекта, проверка договора на строительство, анализ сметы, обследование дома на соответствие строительным нормам, приёмка дома, консультации по реконструкции, строительный контроль - это моя работа и я делаю её за деньги.