Серия «IP протокол (IPv4)»

14

Как работает фрагментация пакетов в IP (на примере тестов iPerf3)

В этом посте поговорим про фрагментацию пакетов, разберемся как она работает и почему она не выгодна никому: ни хостам, ни маршрутизатором, сначала будет немного теории, а затем воспользуемся генератором пакетов и посмотрим дампы.

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Что такое фрагментация?

Из разговора про MTU мы помним четыре момента:

  1. Минимальный размер кадра 64 байт.

  2. MTU по умолчанию в Ethernet сетях 1500 байт.

  3. Кадры могут быть гораздо больше чем 1500 байт.

  4. MTU параметр настраиваемый и не факт, что на всех линка будет настроен MTU, который будет пропускать пакеты, генерируемые отправителем.

Это некие вводные ограничения, которые нам дает Ethernet. IPv4 к этим ограничением добавляет то, что узел получатель должен гарантировать всем своим соседям, что он может принять IP-пакет размером 576 байт, а узел в IPv6 должен уметь обрабатывать пакеты размером 1280 байт.

С учетом вышеописанного легко можно представить две ситуации, в которых может начать работать фрагментация :

  1. Хосты согласовали обмен пакетами 1500 байт (на самом деле они согласовали TCP или SCTP MSS), но на сети есть линк или линки, где MTU меньше 1500 байт.

  2. Хосты генерируют пакеты размером более 1500 байт, а на транзитных узлах MTU равен 1500 байт.

Эти ситуации можно решить за счет хостов, им просто нужно генерировать такие пакеты, которые пролезут через любой линк на сети, проблема в том, что хосты не знают MTU на всей сети и обычно надеются, что MTU всей сети не меньше, чем MTU их интерфейсов, которые в эту сеть включены, но есть и другие варианты решения:

  1. Транзитное устройство может уведомить отправителя о том, что тот генерирует слишком большие пакеты и, если отправителю не запрещено, то он может начать генерировать пакеты меньшего размера.

  2. Транзитный узел может не уведомлять отправителя о том, что тот генерирует большие пакеты, а начать самостоятельно разбивать их на такие пакеты, которые гарантированно пройдут через линк. Это и есть фрагментация.

  3. Слишком большие пакеты могут просто уничтожаться, но нам этот вариант не очень интересен.

Стоит понимать, что фрагментация пакетов явление вынужденное и не очень желательное, единственное достоинство фрагментации заключается в следующем: если приложения не заботятся о размерах передаваемых данных, то это делает IP, чтобы хоть каким-то образом, но связь между отправителем и получателем поддерживалась.

Минусов у фрагментации много, вот три основных на мой взгляд:

  1. При потере одного из фрагментов можно считать, что теряется весь исходный пакет.

  2. Фрагментация повышает нагрузку на устройства сети.

  3. В некоторых случаях при сборке фрагментированного пакет может быть нарушена целостность передаваемых данных.

Вот несколько ссылок, где вы можно больше узнать о проблемах, фрагментации, все на ин-язе: RFC 4963, Fragmentation Considered Harmful, RFC 8900.

Поля IP заголовка для управление фрагментацией

В IP заголовке имеется четыре поля, которые так или иначе используются при фрагментации.

  1. Размер пакет (Total Lenght). В этом поле хранится полный размер пакета в байтах, т.е. заголовка плюс поля данных.

  2. Идентификатор (Identification). Это поле помогает принимающей стороне собрать исходный пакет из полученных фрагментов, у фрагментов, которые являются частями одного исходного пакета, значение этого поля будет одинаковым.

  3. Флаги (Flags). Под каждый флаг выделен один бит, нумерация начинается с нуля. Нулевой бит(нулевой флаг) нам не интересен, первый бит называется DF или do not fragment, если значение этого бита равно единицы, то пакет фрагментировать запрещено, если возникает ситуация когда у пакета DF = 1 и размер больше допустимого MTU, такой пакет уничтожается(некоторые устройства игнорируют бит DF и всё равно выполняют фрагментацию). Второй флаг называется MF или more fragments, он используется для того, чтобы обозначить конец последовательности фрагментированных пакетов, пока MF = 1 узел получатель будет ожидать новые фрагменты, как только придет пакет с MF = 0, получатель поймет, что последовательность фрагментированных пакетов закончилась.

  4. Смещение фрагмента (Fragment Offset). IP не гарантирует того, что получатель будет получать пакеты в той же последовательности, в которой их генерировал отправитель. В случаях, когда фрагментации нет, проблема собрать всё в нужной последовательности это проблема вышестоящего процесса или протокола, но если получатель принял фрагментированную последовательность, задача собрать исходных пакет из фрагментов ложится на IP процесс, поле смещение помогает понять в какой последовательности надо собирать исходный пакет. Данное поле хранит численное значение, одна единица этого числа равна восьми байтам.

Вот так эти поля выглядят в дампе Wireshark.

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Поля фрагментированного пакета:Total Length, Identification, Flags, Fragment Offset в дампе Wireshark

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Структура IP-пакета

Цвета на двух картинках выше соответствуют.

Смещение фрагмента в IP

Стоит отдельно остановиться на поле Fragment Offset, его размер 13 бит, то есть максимальное значение этого поля 8191, но весь вопрос в том, какие единицы измерения используются для смещения фрагмента, если в этом поле стоит значение 1, то это означает, что сдвиг надо делать на 8 байт, то есть максимально возможное смещение 65528 байт.

Проще всего разобраться с вопросом смещения можно будет на примере, допустим, у нас есть два хоста, соединенных каналом с MTU 1500 байт, но хосты хотят обмениваться пакетами размером 5940 байт, в этом случае будет включаться механизм фрагментации, и каждый исходный пакет будет разделен на четыре пакета по 1500 байт, чтобы они гарантированно прошли через канал, смещение первого фрагментированного пакета будет равно нулю, у второго пакета оно уже будет 1480 байт, третий пакет будет иметь смещение 2960 и последний пакет будет со смещением 4440 байт, все описанное выше представлено на рисунке.

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Пример работы фрагментации IP пакетов

Для удобства я пересчитывал единицы измерения смещения в байты.

Из примера понятно, что фрагментация это лишняя работа не только для транзитных узлов, которые ее выполняют, но и для хостов. Также в примере виден смысл поля ID и флага MF, по ним получатель понимает, что это не конец фрагментированной последовательности, но получатель заранее не знает размер исходного пакета.

В качестве проверки и подтверждения сказанного ранее я сделал пинг пакетам с размером, как в примере выше, и снял дамп, важно, чтобы MTU линков был равен 1500 байт чтобы получилось как в примере.

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Пример фрагментированных пакетов в дампе Wireshark

Интересные столбцы выделены цветами:

голубой = размер пакета

зеленый = наличие флага MF

красный = смещение

оранжевый = идентификатор

Строки выделять не стал, поскольку розовая строка здесь означает конец фрагментированной последовательности. Плюс важно учитывать, что на этом скрине в столбце Offset значение смещения не в байтах.

Установка iPerf3 на Linux и в Windows

Перейдем к практике, тренироваться будем на той же лабе, которая использовалась в посте про MTU. Вот топология сети:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Топология сети лабы

Далее будет краткий гайд по установке и использованию iPerf в Linux и Windows, кому этот момент очевиден, можно смело пропускать.

Iperf представляет собой простой кросс-платформенный генератор трафика, у него есть две версии: вторая и третья, второй никогда не пользовался и чем она отличается от третьей не знаю. Iperf является клиент-серверным приложением.

Iperf это утилита командной строки в Windows, установка его здесь довольная простая, скачиваете архив по этой ссылке, выбирайте самую свежую версию, она внизу. Внутри полученного архива будет папка с именем iperf+номер_версии_разрядность_ОС:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Архив с iPerf3

Если хотите, можете скинуть эту папку в любое удобное вам место и на этом установка будет завершена. Я же создам в корне диска C папку с именем iperf3 и скопирую в него содержимое папки "iperf3.17_64.", так будет проще:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Установленный iPerf3

При желании можете добавить путь к файлу iperf3.exe в переменную PATH, тогда для запуска программы не придется каждый раз в командной строке переходить по пути C:\iperf3 чтобы запустить программу.

Установку в Linux буду показывать на примере Debian 10, пишем две команды:

sudo apt update&&upgrade -y

sudo apt install iperf3

В других дистрибутивах команды могут отличаться, в команде на установку iperf тройку после iperf пишем обязательно, иначе установится вторая версия.

Примечание

В репозитории дистрибутива, который вы используете, может находиться пакет не с самой последней версией iPerf, в моем случае вопрос версии не принципиален, нам просто надо посмотреть на работу фрагментации, но если вы планируете использовать его для тестов своих каналов, учитывайте два момента: тесты, выполненные на iperf разных версий, могут не показать реальной картины (обычно результаты хуже чем есть на самом деле), в разных версиях есть разные баги, влияющие на результаты тестирования. Microsoft же вообще не рекомендует использовать iPerf для тестов в Windows.

Как запустить тест скорости iPerf

Запустить тест скорости в iPerf дело не хитрое, начнем с сервера. Запуск сервера делается так:

iperf3 -s

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Запущенный сервер iPerf в Linux

Сервер ожидает запросы от клиента на порт 5201 любого из транспортных протоколов: TCP, UDP, SCTP. Если у вас используется firewall, убедитесь что порт открыт.

Клиента iperf будем запускать в Windows, для этого нужно запустить командую строку желательно от имени администратора, перейти в папку, где лежит exe файл (переходить никуда не надо будет, если добавить путь к iperf3.exe в переменную PATH):

C:\Windows\system32>cd c:\iperf3

c:\iperf3>iperf3.exe -c 10.0.0.2 -f k -M 1300

Connecting to host 10.0.0.2, port 5201

[ 5] local 10.0.0.6 port 49786 connected to 10.0.0.2 port 5201

[ ID] Interval Transfer Bitrate

[ 5] 0.00-1.01 sec 256 KBytes 2079 Kbits/sec

[ 5] 1.01-2.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 2.01-3.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 3.01-4.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 4.01-5.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 5.01-6.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 6.01-7.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 7.01-8.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 8.01-9.01 sec 0.00 Bytes 0.00 Kbits/sec

[ 5] 9.01-10.01 sec 0.00 Bytes 0.00 Kbits/sec

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate

[ 5] 0.00-10.01 sec 256 KBytes 210 Kbits/sec sender

[ 5] 0.00-14.04 sec 97.8 KBytes 57.0 Kbits/sec receiver

iperf Done.

c:\iperf3>

Опции для разных ОС одинаковые, пользователи Linux могут получить справку при помощи утилиты man, в Windows можно написать iperf3.exe -h, но лучше обратиться к документации. Опции iperf делятся на серверные, клиентские и универсальные.

Теперь по поводу команды в Windows: -c говорит о том, что iperf запускается в режиме клиента, при этом данной опции надо передать IP-адрес сервера. Опция -f k говорит iperf о том, что скорость должна быть отображена в kbps, а -M 1300 задает размер TCP MSS 1300 байт.

Учитывайте, что какой бы протокол вы не использовали, iperf выставить df-bit = 1 и это никак не изменить, насколько мне известно, и это нужно учитывать при дальнейших тестах, плюс по умолчанию iperf генерирует пакеты только в одну сторону: от клиента к серверу. На сервере статистика тоже отображается, вот статистика для соединения, которое мы инициировали командой, выполненной выше в Windows:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Статистика теста скорости iperf на Linux сервере

Более детальную информацию о тесте можно получать, если использовать опцию -V на клиенте и сервере.

Как убрать df-bit у транзитного IP-пакета на роутере Cisco

Пожалуй, самый плохой сценарий для маршрутизатора в вопросах фрагментации, это когда маршрутизатор выполняет эту самую фрагментацию. Выше я не случайно написал про df-bit, который iPerf всегда выставляет на генерируемые им пакеты. С выставленным df-bit мы фрагментацию никогда не увидим, значит, его надо обнулить, как это сделать средствами Windows я не знаю и тратить время на то, чтобы с этим разобраться я не захотел, а вот на роутерах Cisco можно написать route-map и навешать этот route-map на интерфейс, в который будут входить пакеты с установленным df-bit, который мы хотим обнулять.

Примечание

Для тех, кто читал пост про MTU. В той лабе на интерфейсе CSR в сторону коммутатора был создан саб-интерфейс Gi2.200, на нем и был настроен IP-адрес, сейчас же саб-интерфейс Gi2.200 удален, IP-адрес перенесен на Gi2, а на линке CSR/SW кадры ходят без вланов.

Создать route-map можно, например, такой:

CSR#conf t

CSR(config)#route-map RM_DEL-DF-BIT permit 10

CSR(config-route-map)#match ip address 101

CSR(config-route-map)#set ip df 0

CSR(config-route-map)#exit

CSR(config)#access-list 101 permit tcp 10.0.0.0 0.0.0.255 any

Строка set ip df 0 как раз и заставляет обнулять df-bit, а RM_DEL-DF-BIT это просто имя route-map, которое я ей придумал. Роут-мапу нам надо повешать на интерфейс Gi2, поскольку пакеты с df-bit, который мы хотим обнулять, будут входить именно в интерфейс (если бы остался саб-интерфейс Gi2.200, то тогда вешать надо было бы на него). Делается это так:

CSR#conf t

CSR(config)#int gi2

CSR(config-if)#ip policy route-map RM_DEL-DF-BIT

И давайте зададим IP MTU 1300 байт на интерфейс Gi1:

CSR#conf t

CSR(config)#int gi1

CSR(config-if)#ip mtu 1300

Всё, лабу подготовили.

Как работает фрагментация IP пакетов на роутере

Наконец-то мы добрались до самой фрагментации. Запустим iperf на Винде(команда iperf3.exe -c 10.0.0.2 -f k -M 1370) и снимем дампы:

  1. Первый с линка между SW/Win, здесь будут идти не фрагментированные пакеты с TCP MSS 1370 байт, это уже больше чем MTU интерфейса Gi1, но к значению MSS нужно будет добавить еще размеры заголовков TCP и IP.

  2. Второй дамп будем делать с линка Host_1/CSR. Здесь мы сможем увидеть фрагментированные пакеты, видя два дампа, мы сможем сделать вывод о том, что фрагментацию выполняет именно роутер.

Важно найти один и тот же пакет как в первом, так и во втором дампе, проще всего это сделать по идентификатору пакета. Вот пакет с номером 2e8b на линке SW/Win:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Не фрагментированный пакет размером 1410 байт

Размер пакета 1410 байт, df-bit = 1. А вот этот же пакет на линке Host_1/CSR:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Роутер разделил исходный пакет и теперь вместо одного пакета 1410 байт у нас два пакета размером 1430 байт

Во-первых, пакетов два: 1300 байт и 130 байт, а это больше изначальных 1410, уже неприятно, особенно, если счёт будем вести на миллионы. Во-вторых, видим, что пакеты, которые идут в сторону Debian, имеют df-bit = 0, из увиденного делаем выводы:

  1. Route-map работает, CSR снимает df-bit и делает фрагментацию.

  2. Фрагментацию выполняет роутер.

Не вижу сейчас особого смысла смотреть внутрь пакета, т.к. все интересующие нас поля я вывел в дамп, но если что, вот пакет, который генерировала Винда:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Исходный пакет размером 1410 байт

Вот первый фрагмент на выходе из CSR Gi1:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Первый фрагмент исходного пакета

А вот второй фрагмент:

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Второй фрагмент исходного IP-пакета

Мы посмотрели пример фрагментации пакетов, понятно, что делать это на роутерах не очень правильно, но иногда приходится.

В следующий раз поговорим про Path MTU Discovery, для этого нужно отвязать route-map от интерфейса Gi2, чтобы роутер перестал обнулять df-bit:

CSR#conf t

CSR(config)#int gi2

CSR(config-if)#no ip policy route-map RM_DEL-DF-BIT

IP MTU 1300 байт на линке Gi1 оставляем.

Вопросы для ваших ответов

Может ли фрагментированный IP пакет быть меньше 68 байт и почему?

Напомню топологию

Как работает фрагментация пакетов в IP (на примере тестов iPerf3) Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Системное администрирование, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux, Компьютер, Пакет, Фрагментация

Топология сети лабы

Представим ситуации: на интерфейсе Gi2 роутера CSR настроен IP MTU 1400 байт, на всех остальных линках IP MTU 1500 байт, хост Windows генерирует в сторону Linux пакеты размером 1450 байт, что с этими пакетами будет?

Имеется линк с IP MTU 700 байт: на сколько фрагментов и какого разрмера будет разбит пакет1400 байт?

Имеется линк с IP MTU 725 байт: на сколько фрагментов и какого разрмера будет разбит пакет1430 байт?

Видео версия

Для тех, кому проще смотреть и слушать есть видео версия

Показать полностью 15 1
14

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco

Господа, дамы, здравствуйте!

В прошлом посте обсудили MTU и некоторые важные особенности, связанные с размерами пакетов и кадров, в этом давайте посмотрим: как можно менять MTU на различном оборудование, для примера рассмотрим следующие устройства:

  1. Компьютер под управлением Linux, для этого будет использоваться виртуальная машина с Debian 10 (на схеме это Host_1).

  2. Компьютер под управлением Windows 10 (значок с подписью Win).

  3. Роутер CSR1000v под управлением IOS XE.

  4. Хотелось бы еще рассмотреть классические коммутаторы, но коммутаторы под управлением IOL в EVE-NG, как я понял, всё-таки являются multilayer свичами, а не классическими L2, плюс на IOL у меня не получилось изменить канальный MTU, но SW на схему добавлен и мы немного с ним поработаем.

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Схема, на которой будем всё это тестировать:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Схема для тестов с MTU

Зеленый кружок это возможность для выхода устройств лабы в реальную сеть, IP-адреса подписаны на схеме, а на линке SW/CSR кадры ходят в 200 влане, в сторону Windows кадры отдаются без метки.

Как изменить MTU на коммутаторе Cisco

Перед изменением MTU разберемся как его смотреть, есть стандартное заблуждение, что на оборудование Cisco в конфигурации нельзя увидеть значения MTU, если оно равно значению MTU по умолчанию, и действительно, команда show run не дает никаких результатов:

SW#sh run | in mtu

SW#sh run | in MTU

SW#

Можно даже посмотреть конфигурацию одного из интерфейсов:

SW#sh run int e0/0

Building configuration...

Current configuration : 29 bytes

!

interface Ethernet0/0

end

SW#

Но почему-то многие забывают что есть show run all:

SW#sh run all | in mtu

crypto ikev2 fragmentation mtu 576

mtu 1500

mpls mtu 1500

mtu 1500

mpls mtu 1500

mtu 1500

mpls mtu 1500

mtu 1500

mpls mtu 1500

no ip tcp path-mtu-discovery

SW#

В лабе EVE-NG используется коммутатор IOL, MTU у них меняются на интерфейсах. Вот пример конфигурации интерфейса Ethernet0/0:

SW#show run all | s Ethernet0/0

buffers Ethernet0/0 permanent 96

buffers Ethernet0/0 max-free 96

buffers Ethernet0/0 min-free 0

buffers Ethernet0/0 initial 0

interface Ethernet0/0

switchport

switchport access vlan 1

no switchport nonegotiate

no switchport protected

no switchport port-security mac-address sticky

mtu 1500

no ip arp inspection trust

ip arp inspection limit rate 15 burst interval 1

ip arp inspection limit rate 15

load-interval 300

carrier-delay 2

no shutdown

tx-ring-limit 64

tx-queue-limit 64

no macsec replay-protection

no macsec

ipv6 mfib forwarding input

ipv6 mfib forwarding output

ipv6 mfib cef input

ipv6 mfib cef output

mpls mtu 1500

snmp trap link-status

no onep application openflow exclusive

cts role-based enforcement

no mka pre-shared-key

mka default-policy

cdp tlv location

cdp tlv server-location

cdp tlv app

arp arpa

arp timeout 14400

channel-group auto

spanning-tree port-priority 128

spanning-tree cost 0

hold-queue 2000 in

hold-queue 0 out

ip igmp snooping tcn flood

no bgp-policy accounting input

no bgp-policy accounting output

no bgp-policy accounting input source

no bgp-policy accounting output source

no bgp-policy source ip-prec-map

no bgp-policy source ip-qos-map

no bgp-policy destination ip-prec-map

no bgp-policy destination ip-qos-map

SW#

Если не увидели в выводе выше значение MTU, то вот строки: mtu 1500, mpls mtu 1500. Все интерфейсов на коммутаторе четыре:

SW#

SW#sh int des

Interface Status Protocol Description

Et0/0 up up

Et0/1 up up

Et0/2 up up

Et0/3 up up

SW#

Посмотреть MTU на интерфейсе можно еще и так:

SW#sh int e0/0 | in MTU

MTU 1500 bytes, BW 10000 Kbit/sec, DLY 1000 usec,

SW#

Это канальный MTU. В конфигурации каждого порта мы видим два MTU: Ethernet и MPLS, оба равны 1500 байт, но порт можно перевести в режим роутера, тогда у него появится еще и IP MTU. Переводим порт:

SW#conf t

SW(config)#int e0/1

SW(config-if)#no switchport

Посмотрим какие MTU есть на коммутаторе:

SW#sh run all | in mtu

crypto ikev2 fragmentation mtu 576

mtu 1500

mpls mtu 1500

mtu 1500

ip mtu 1500

mpls mtu 1500

mtu 1500

mpls mtu 1500

mtu 1500

mpls mtu 1500

no ip tcp path-mtu-discovery

SW

Появилась строка ip mtu 1500, она относится к порту Ethernet0/1. Чтобы посмотреть IP MTU можно воспользоваться вот такой командной:

SW#sh ip int e0/1

Ethernet0/1 is up, line protocol is up

Internet protocol processing disabled

SW#

Возникла ошибка, дело в том, что интерфейс e0/1 переведен в режим роутера, но на нем не работает IP процесс, чтобы он заработал, надо настроить IP-адрес:

SW#conf t

Enter configuration commands, one per line.

SW(config)#int e0/1

SW(config-if)#ip add

SW(config-if)#ip address 1.1.1.1 255.255.255.0

Теперь мы можем посмотреть IP MTU и другие параметры процесса IP:

SW#sh ip int e0/1

Ethernet0/1 is up, line protocol is up

Internet address is 1.1.1.1/24

Broadcast address is 255.255.255.255

Address determined by setup command

MTU is 1500 bytes

MPLS MTU посмотреть можно так (но MPLS должен быть включен на интерфейсе):

SW# sh mpls interfaces e0/1 detail

Interface Ethernet0/1:

Type Unknown

IP labeling not enabled

LSP Tunnel labeling not enabled

IP FRR labeling not enabled

BGP labeling not enabled

MPLS not operational

MTU = 1500

SW#

Изменить канальный MTU можно было бы вот такой командой:

SW#conf t

SW(config)#int e0/1

SW(config-if)#mtu 1600

% Interface Ethernet0/1 does not support user settable mtu.

SW(config-if)#

IP MTU на образах IOL меняется:

SW(config-if)#ip mtu 1000

MPLS MTU тоже можно поменять:

SW(config-if)#mpls mtu 1100

Итоговая конфигурация интерфейса теперь такая:

SW#sh run int e0/1

Building configuration...

Current configuration : 106 bytes

!

interface Ethernet0/1

no switchport

ip address 1.1.1.1 255.255.255.0

ip mtu 1000

mpls mtu 1100

end

SW#

Классические коммутаторы Cisco, как правило, не позволяют менять MTU отдельных интерфейсов и не имеют конфигураций MPLS MTU, у них есть так называемый system mtu, который позволяет задавать MTU всем интерфейсам сразу, показать не могу, поэтому отправлю к странице Configuration Guide для Catalyst 2960.

Команда Ping и размеры пакетов при пинге

Порт e0/1 на коммутаторе никак не влияет на передачу данных между хостами. MTU на всех линках, которые обеспечивают связность между ПК, сейчас стандартный и равен 1500 байт. Давайте в этом убедимся пингом с одного хоста на другой:

user@debian:~$ ping 10.0.0.6 -M do -s 1472 -c 4

PING 10.0.0.6 (10.0.0.6) 1472(1500) bytes of data.

1480 bytes from 10.0.0.6: icmp_seq=1 ttl=127 time=1.20 ms

1480 bytes from 10.0.0.6: icmp_seq=2 ttl=127 time=1.51 ms

1480 bytes from 10.0.0.6: icmp_seq=3 ttl=127 time=1.46 ms

1480 bytes from 10.0.0.6: icmp_seq=4 ttl=127 time=1.76 ms

Здесь стоит обратить внимание на то, что опция -s 1472 задает размер ICMP вложения без учета ICMP и IP заголовков, таким образом получается, что сформированный IP-пакет равен 1500 байт. В этом легко убедиться, если посмотреть на дамп Wireshark:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Размер пакета, который был сгенерирован при пинге с опцией -s 1472 в Linux

Если указать размер 1473 байта, то пинга не будет:

user@debian:~$ ping 10.0.0.6 -M do -s 1473 -c 3

PING 10.0.0.6 (10.0.0.6) 1473(1501) bytes of data.

ping: local error: Message too long, mtu=1500

ping: local error: Message too long, mtu=1500

ping: local error: Message too long, mtu=1500

--- 10.0.0.6 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 43ms

user@debian:~$

На скрине зеленым выделен размер кадра, красным IP-пакета. А теперь сделаем пинг с роутера в сторону Debian:

CSR#ping 10.0.0.2 size 1500 df-bit

Type escape sequence to abort.

Sending 5, 1500-byte ICMP Echos to 10.0.0.2, timeout is 2 seconds:

Packet sent with the DF bit set

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/63/121 ms

CSR#ping 10.0.0.2 size 1501 df-bit

Type escape sequence to abort.

Sending 5, 1501-byte ICMP Echos to 10.0.0.2, timeout is 2 seconds:

Packet sent with the DF bit set

.....

Success rate is 0 percent (0/5)

CSR#

По результату пингов можно сделать вывод, что в IOS XE задается размер IP пакета при выполнении пинга. В Windows при пинге задается размер ICMP вложения без учета заголовков IP и ICMP:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Пинг в Windows с указанием размера payload ICMP и запретом на фрагментацию

Вывод из этого всего простой. Когда вы задаете размеры чего-то при пинге, всегда узнавайте, чего именно размер вы задаете.

Как изменить MTU на роутере Cisco?

Фактически способы изменения различных MTU на роутере мы рассмотрели, когда говорили про коммутаторы, т.к. для примера использовался multilayer switch. Но давайте все-таки кое-что посмотрим.

Для начала обратим внимание что максимальный канальный MTU на интерфейсе роутера может быть 9216 байт:

CSR#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

CSR(config)#int gi1

CSR(config-if)#mtu ?

<1500-9216> MTU size in bytes

CSR(config-if)#mtu

При этом сейчас канальный MTU равен 1500 байт, давайте посмотрим на возможные значение IP и MPLS MTU:

CSR(config-if)#ip mtu ?

<68-1500> MTU (bytes)

CSR(config-if)#mpls mtu ?

<64-1500> MTU (bytes)

Изменим L2 MTU, зададим максимальное значение:

CSR(config-if)#mtu 9216

CSR(config-if)#do sh int gi1 | in MTU

MTU 9216 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

Значение изменилось, а теперь давайте посмотрим на значения, которые можно задать IP и MPLS MTU:

CSR(config-if)#ip mtu ?

<68-9216> MTU (bytes)

CSR(config-if)#mpls mt

<64-9216> MTU (bytes)

Их верхняя граница отодвинулась на значение 9216 байт, при этом у IP минимальный MTU может быть равен 68 байт, а у Ethernet и MPLS 64. Давайте теперь посмотрим на линк в сторону коммутатора, в самом начале я упоминал, что на этом линке используется 200 влан, со стороны роутера настроен саб-интерфейс с номером 200, который инкапсулирует кадры в 200 влан, конфигурация выглядит так:

CSR# sh run int gi2

Building configuration...

Current configuration : 96 bytes

!

interface GigabitEthernet2

description toHost_2_via_SW

no ip address

negotiation auto

end

CSR# sh run int gi2.200

Building configuration...

Current configuration : 100 bytes

!

interface GigabitEthernet2.200

encapsulation dot1Q 200

ip address 10.0.0.5 255.255.255.252

end

CSR#

Поясню по поводу саб-интерфейса Gi2.200: о том, что на кадры нужно ставить метку с номером 200, говорит строка encapsulation dot1Q 200, цифра 200 после Gi2 это номер саб-интерфейса, эта цифра не обязана совпадать с номером влана, но для удобства их обычно делают одинаковыми.

Саб-интерфейс и влан в данном случае я городил, чтобы посмотреть на связь между MTU физического интерфейса и MTU саб-интерфейса.

Посмотрим какие MTU сейчас на Gi2 и Gi2.200:

CSR#sh int gi2 | in MTU

MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR#sh int gi2.200 | in MTU

MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR#sh ip int gi2.200 | in MTU

MTU is 1500 bytes

CSR#

Посмотрим какой MTU можно задать саб-интерфейсу:

CSR(config)#int gi2.200

CSR(config-subif)#mtu ?

<1500-9216> MTU size in bytes

Выставим саб-интерфейсу L2 и L3 MTU равными 1600 байт:

CSR(config)#int gi2.200

CSR(config-subif)#mtu 1600

CSR(config-subif)#ip mtu ?

<68-1500> MTU (bytes)

CSR(config-subif)#ip mtu

Роутер съел команду mtu 1600, но при этом задать ip mtu 1600 возможности нет. Давайте посмотрим применился ли L2 MTU 1600 для саб-интерфейса:

CSR#sh int gi2.200 | in MTU

MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR#

А вот и не изменился. Выставим L2 MTU 1600 байт для Gi2:

CSR(config)#int gi2

CSR(config-if)#mtu 1600

CSR(config-if)#do sh int gi2 | in MTU

MTU 1600 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR(config-if)#

Выставили, он применился. Посмотрим MTU Gi2.200:

CSR(config-if)#do sh int gi2.200 | in MTU

MTU 1600 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR(config-if)#

Увеличим MTU Gi2 до 1700 байт и посмотрим канальный MTU Gi2.200:

CSR(config)#int gi2

CSR(config-if)#mtu 1700

CSR(config-if)#do sh int gi2.200

GigabitEthernet2.200 is up, line protocol is up

Hardware is CSR vNIC, address is 5000.0002.0001 (bia 5000.0002.0001)

Internet address is 10.0.0.5/30

MTU 1700 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

Канальный MTU саб-интерфейса увеличивается вместе с канальным MTU основного интерфейса. L3 MTU теперь тоже можно сделать 1700 байт, но мы сделаем 1600 байт:

CSR(config)#int gi2.200

CSR(config-subif)#ip mtu ?

<68-1700> MTU (bytes)

CSR(config-subif)#ip mtu 1600

CSR(config-subif)#do sh run int gi2.200

Building configuration...

Current configuration : 113 bytes

!

interface GigabitEthernet2.200

encapsulation dot1Q 200

ip address 10.0.0.5 255.255.255.252

ip mtu 1600

end

CSR(config-subif)#do sh ip int gi2.200 | in MTU

MTU is 1600 bytes

CSR(config-subif)#do sh int gi2.200 | in MTU

MTU 1700 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

CSR(config-subif)#

Какие выводы мы можем сделать из увиденного?

  1. В IOS XE значение Ethernet MTU саб-интерфейса наследуется от основного интерфейса.

  2. Сетевым MTU саб-интерфейса можно управлять, но он не может быть больше канального.

  3. Плюс нужно не забывать, что это пример конкретного оборудования с конкретной операционной системой, и на каком-то ином оборудование поведение может быть другим, поэтому либо читайте документацию, либо тестируйте, а лучше и то и другое.

По факту в IOS XE на саб-интерфейсе можно менять IP MTU и MPLS MTU, канальный MTU наследуется, это подтверждает вывод sh run all:

CSR#sh run all | b GigabitEthernet2.200

interface GigabitEthernet2.200

...

encapsulation dot1Q 200

ip address 10.0.0.5 255.255.255.252

....

ip mtu 1600

...

mpls mtu 1700

.....

!

По результатам sh run all видим, что нет даже возможности задать канальный mtu на саб-интерфейсе, а вот конфигурация основной интерфейс.

CSR#sh run all | b GigabitEthernet2

interface GigabitEthernet2

description toHost_2_via_SW

...

mtu 1700

...

ip mtu 1700

...

mpls mtu 1700

...

!

Для дальнейшего рассмотрения я вернул MTU всех интерфейсов на 1500 байт.

Размер Ethernet заголовка и настройки MTU

В прошлом посте про MTU я говорил, что есть некоторые стандарты, которые увеличивают размер заголовка, самый очевидный и часто используемый в компьютерных сетях стандарт это 802.1q или VLAN, он добавляет к полю заголовка 4 байта, то есть эта добавка никак не должна влиять на способность оборудования пропустить кадр с MTU 1500, если на интерфейсах этого оборудования настроено 1500 байт.

Убедимся в этом, запустим пинг из Linux в Windows IP-пакетами размером 1500 байт и снимем дамп с двух линков:

  1. На линке Host_1/CSR. Здесь кадр идет без поля 802.1q.

  2. На линке CSR/SW, здесь кадры идут с меткой 200.

На линке коммутатор/Windows дамп снимать смысла нет, потому что коммутатор убирает метку, когда отдает кадр в сторону ПК. Пинг:

user@debian:~$ ping 10.0.0.6 -M do -s 1472

PING 10.0.0.6 (10.0.0.6) 1472(1500) bytes of data.

1480 bytes from 10.0.0.6: icmp_seq=1 ttl=127 time=56.6 ms

1480 bytes from 10.0.0.6: icmp_seq=2 ttl=127 time=1.19 ms

1480 bytes from 10.0.0.6: icmp_seq=3 ttl=127 time=1.46 ms

1480 bytes from 10.0.0.6: icmp_seq=4 ttl=127 time=1.57 ms

1480 bytes from 10.0.0.6: icmp_seq=5 ttl=127 time=1.79 ms

1480 bytes from 10.0.0.6: icmp_seq=6 ttl=127 time=1.88 ms

Дамп с линка между Линуксом и роутером:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Ethernet кадр без метки размером 1514 байт с вложением 1500 байт

Зеленым выделен размер кадра (Dst MAC + Src MAC + Type + Payload). Красным выделен размер пакета 1500 байт. Теперь кадр на линке между роутером и коммутатором:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Ethernet кадр с меткой размером 1518 байт с вложением 1500 байт

Размер кадра увеличен до 1518 байт за счет того, что к заголовку добавились поля 802.1Q, но IP-пакет по-прежнему 1500 байт, данный кадр прошел через линк с MTU 1500 байт и это правильное поведение оборудование, но если вы работаете с каким-нибудь noname китайским тестируйте такие моменты.

Как изменить MTU интерфейса в Windows 10?

Сразу скажу, что я не самый быстрый стрелок на этом диком западе в части специфичных сетевых настроек на Винде, но как поменять MTU я знаю, для начала давайте посмотрим какие интерфейсы есть и какой MTU на них задан. Вот этой командной можно посмотреть канальные интерфейсы и их MTU в Windows:

C:\Windows\system32>netsh interface ipv4 show subinterfaces

MTU MediaSenseState Bytes In Bytes Out Interface

------ --------------- --------- --------- -------------

4294967295 1 0 2885 Loopback Pseudo-Interface 1

1500 1 5304932209 130883729 Ethernet

1500 1 7203292 7209265 Ethernet 2

1500 1 1665597 7301481 Ethernet 3

C:\Windows\system32>

В левом столбце значение L2 MTU, вывод я такой делаю, потому что можно посмотреть расширенные настройки интерфейсов:

C:\Windows\system32>netsh interface ipv4 show interfaces level=verbose

Interface Loopback Pseudo-Interface 1 Parameters

----------------------------------------------

IfLuid : loopback_0

IfIndex : 1

State : connected

Metric : 75

Link MTU : 4294967295 bytes

Reachable Time : 30500 ms

Base Reachable Time : 30000 ms

Retransmission Interval : 1000 ms

DAD Transmits : 0

Site Prefix Length : 64

Site Id : 1

Forwarding : disabled

Advertising : disabled

Neighbor Discovery : disabled

Neighbor Unreachability Detection : disabled

Router Discovery : dhcp

Managed Address Configuration : enabled

Other Stateful Configuration : enabled

Weak Host Sends : disabled

Weak Host Receives : disabled

Use Automatic Metric : enabled

Ignore Default Routes : disabled

Advertised Router Lifetime : 1800 seconds

Advertise Default Route : disabled

Current Hop Limit : 0

Force ARPND Wake up patterns : disabled

Directed MAC Wake up patterns : disabled

ECN capability : application

Interface Ethernet Parameters

----------------------------------------------

IfLuid : ethernet_32768

IfIndex : 8

State : connected

Metric : 25

Link MTU : 1500 bytes

Reachable Time : 20000 ms

Base Reachable Time : 30000 ms

Retransmission Interval : 1000 ms

DAD Transmits : 3

Site Prefix Length : 64

Site Id : 1

Forwarding : disabled

Advertising : disabled

Neighbor Discovery : enabled

Neighbor Unreachability Detection : enabled

Router Discovery : dhcp

Managed Address Configuration : enabled

Other Stateful Configuration : enabled

Weak Host Sends : disabled

Weak Host Receives : disabled

Use Automatic Metric : enabled

Ignore Default Routes : disabled

Advertised Router Lifetime : 1800 seconds

Advertise Default Route : disabled

Current Hop Limit : 0

Force ARPND Wake up patterns : disabled

Directed MAC Wake up patterns : disabled

ECN capability : application

И тут написано Link MTU. Поменяем значение MTU интерфейсу со значением Ethernet на 1600 байт через командую строку. Изменения рекомендую вносить через командую строку, запущенную от имени администратора:

C:\Windows\system32>netsh interface ipv4 set subinterface "Ethernet" mtu=1600 store=persistent

Ok.

C:\Windows\system32>netsh interface ipv4 show subinterfaces

MTU MediaSenseState Bytes In Bytes Out Interface

------ --------------- --------- --------- -------------

4294967295 1 0 5345 Loopback Pseudo-Interface 1

1600 1 272969 38897 Ethernet

1500 1 7203292 7221915 Ethernet 2

1500 1 3137674 15390579 Ethernet 3

Слово "Ethernet" в команде для смены MTU это имя интерфейса, имена интерфейсов можно посмотреть командой ipconfig. В графическом интерфейсе можно изменить размер кадров, который должен уметь обрабатывать интерфейс, заходим в меню "Настройки параметров адаптера" и здесь жмем ПКМ на нужный интерфейс:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Перечень адаптеров в Windows 10

Выбираем пункт "Свойства"/"Properties".

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Меню просмотра и настроек свойств выбранного интерфейса

Жмем на кнопку "Configure..."/"Настроить...". А далее идем по цифрам:

Настройка MTU в Windows, Linux, на коммутаторах и роутерах Cisco Сисадмин, Компьютерные сети, IT, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Длиннопост, Windows, Linux

Меню включения Jumbo Frame на сетевых интерфейсах в Windows 10

В русской версии Windows меню "Jumbo Packet" перевели как "Большой кадр". Значение 9014 байт это именно что размер кадра, потому что после того как будет выбрано 9014 байт, MTU интерфейса станет 9000 байт:

C:\Windows\system32>netsh interface ipv4 show subinterfaces

MTU MediaSenseState Bytes In Bytes Out Interface

------ --------------- --------- --------- -------------

4294967295 1 0 6695 Loopback Pseudo-Interface 1

1600 1 570470 92983 Ethernet

9000 1 0 2656 Ethernet 2

1500 1 4577930 22004973 Ethernet 3

C:\Windows\system32>

Когда вы включаете Jumbo кадры, интерфейс перезагружается.

Как изменить MTU в Linux?

Перейдем к Linux. Разберемся как проверять MTU на интерфейсах.

Прежде чем продолжить сделаю одно примечания. В посте о настройке лабы TTL я довольно подробно описал базовые сетевые настройки для Debian 10, плюс там же дал некоторые полезные ссыли, поэтому сейчас на этом вопросе подробно не останавливаюсь.

На конкретном интерфейсе MTU смотрим так:

user@debian:~$ ip link show dev ens3

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:00 brd ff:ff:ff:ff:ff:ff

user@debian:~$

На всех интерфейсах можно посмотреть так:

user@debian:~$ ip link list

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:00 brd ff:ff:ff:ff:ff:ff

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:01 brd ff:ff:ff:ff:ff:ff

Или вот так:

user@debian:~$ ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:00 brd ff:ff:ff:ff:ff:ff

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:01 brd ff:ff:ff:ff:ff:ff

Или даже так:

user@debian:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:03:00 brd ff:ff:ff:ff:ff:ff

inet 192.168.0.180/24 brd 192.168.0.255 scope global dynamic ens3

valid_lft 6939sec preferred_lft 6939sec

inet6 fe80::250:ff:fe00:300/64 scope link

valid_lft forever preferred_lft forever

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:03:01 brd ff:ff:ff:ff:ff:ff

inet 10.0.0.2/30 brd 10.0.0.3 scope global ens4

valid_lft forever preferred_lft forever

inet6 fe80::250:ff:fe00:301/64 scope link

valid_lft forever preferred_lft forever

Разберемся с тем, как сделать временные изменения MTU на интерфейсе, изменять будем на ens3, этот интерфейс включен в мою домашнюю сеть, а через нее в интернет, для проверки попинуем Гугл:

user@debian:~$ ping -s 1473 -M do 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 1473(1501) bytes of data.

ping: local error: Message too long, mtu=1500

ping: local error: Message too long, mtu=1500

^C

--- 8.8.8.8 ping statistics ---

2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 19ms

user@debian:~$ ping -s 1472 -M do 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 1472(1500) bytes of data.

1480 bytes from 8.8.8.8: icmp_seq=1 ttl=109 time=54.9 ms

1480 bytes from 8.8.8.8: icmp_seq=2 ttl=109 time=55.4 ms

^C

--- 8.8.8.8 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 2ms

rtt min/avg/max/mdev = 54.873/55.123/55.374/0.343 ms

user@debian:~$

Пакеты размером 1501 байт не проходят, пакеты размером 1500 байт проходят. Изменим MTU:

sudo ip link set ens3 mtu 1400

Запустим пинг:

user@debian:~$ ping -s 1373 -M do 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 1373(1401) bytes of data.

ping: local error: Message too long, mtu=1400

ping: local error: Message too long, mtu=1400

ping: local error: Message too long, mtu=1400

^C

--- 8.8.8.8 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 36ms

user@debian:~$ ping -s 1372 -M do 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 1372(1400) bytes of data.

1380 bytes from 8.8.8.8: icmp_seq=1 ttl=109 time=55.3 ms

1380 bytes from 8.8.8.8: icmp_seq=2 ttl=109 time=55.3 ms

^C

--- 8.8.8.8 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 3ms

rtt min/avg/max/mdev = 55.322/55.328/55.334/0.006 ms

user@debian:~$

Пакеты размером 1401 байт не проходят, 1400 байт проходят. Посмотрим параметры интерфейса:

user@debian:~$ ip link show dev ens3

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000nani

link/ether 00:50:00:00:03:00 brd ff:ff:ff:ff:ff:ff

user@debian:~$

У интерфейса ens3 MTU будет 1400 байт до перезагрузки машины, после ребута он вновь станет 1500 байт. Разберемся как изменить MTU на постоянной основе, как и большая часть других настроек Linux, постоянные изменения применяются через изменение конфигурационных файлов. Открываем файл с сетевыми настройками любым удобным редактором:

sudo nano /etc/network/interfaces

Находим конфигурацию нужного нам интерфейса и добавляем в нее значение MTU нужного нам размера, в моем случае 1400 байт:

#to_CSR

allow-hotplug ens4

iface ens4 inet static

address 10.0.0.2/30

up ip route add 10.0.0.4/30 via 10.0.0.1

mtu 1400

Стоит учитывать что название и расположение файла с сетевыми настройками зависит от дистрибутива, с которым вы работаете. Давайте проверим изменился ли MTU:

user@debian:~$ ip link show dev ens4

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:01 brd ff:ff:ff:ff:ff:ff

Нет, он по-прежнему 1500 байт, надо передернуть:

user@debian:~$ sudo ifdown ens4

user@debian:~$ sudo ifup ens4

user@debian:~$ ip link show dev ens4

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:03:01 brd ff:ff:ff:ff:ff:ff

user@debian:~$

Просто ifup будет недостаточно, сперва интерфейс надо выключить, потом включить. Контрольная проверка пингами:

user@debian:~$ ping -s 1373 -M do 10.0.0.1

PING 10.0.0.1 (10.0.0.1) 1373(1401) bytes of data.

ping: local error: Message too long, mtu=1400

ping: local error: Message too long, mtu=1400

^C

--- 10.0.0.1 ping statistics ---

2 packets transmitted, 0 received, +2 errors, 100% packet loss, time 15ms

user@debian:~$ ping -s 1372 -M do 10.0.0.1

PING 10.0.0.1 (10.0.0.1) 1372(1400) bytes of data.

1380 bytes from 10.0.0.1: icmp_seq=1 ttl=255 time=60.9 ms

1380 bytes from 10.0.0.1: icmp_seq=2 ttl=255 time=0.641 ms

1380 bytes from 10.0.0.1: icmp_seq=3 ttl=255 time=0.591 ms

1380 bytes from 10.0.0.1: icmp_seq=4 ttl=255 time=0.595 ms

^C

--- 10.0.0.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 61ms

rtt min/avg/max/mdev = 0.591/15.670/60.856/26.088 ms

user@debian:~$

И не забывайте, что в Linux есть замечательная утилита grep, которая позволяет избежать просмотра портянок различного рода конфигураций и диагностических выводов:

user@debian:~$ ip a | grep mtu

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc pfifo_fast state UP group default qlen 1000

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc pfifo_fast state UP group default qlen 1000

user@debian:~$

Ну и всё, спасибо, что дочитали!

Вопрос для вашего ответа

Почему роутер дает возможность установить минимальный MTU для IP 68 байт, а для MPLS и Ethernet 64 байта? В чем логика, если IP это вложение в Ethernet и тот же IP может быть закрыт MPLS заголовком?

Видео версия

Видео версия для тех, кому проще посмотреть и послушать, чем почитать.

Показать полностью 9 1
17

Что такое MTU? Размер Ethernet кадра и IP пакета

Господа, дамы, здравствуйте!

Ниже поговорим о допустимых размерах Ethernet кадров и IP-пакетов, этот пост по факту небольшое отступление от протокола IP, поскольку речь будет в основном про Ethernet, но это отступление, на мой взгляд, необходимо в связи с тем, что далее запланирован пост про фрагментацию пакетов в IP, а там бы не хотелось отвлекаться на размеры пакетов и ограничения с этим связанные.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Что такое MTU и PDU?

Читая или смотря что-то о компьютерных сетях, вы часто можете встретить две аббревиатуры: PDU и MTU. Первая расшифровывается как Protocol Data Unit, проще говоря PDU это обобщенное название фрагмента данных, которым обмениваются устройства по тому или иному протоколу. Например, IP устройства обмениваются пакетами, значит PDU в IP это пакет, у Ethernet это будет кадр или фрейм, а PDU в UDP это дейтаграмма.

MTU расшифровывается как Maximum Transmission Unit или максимальная единица передачи, проще говоря, это максимальный размер пользовательских(полезных) данных, которые можно передать внутри одного PDU тем или иным протоколом без фрагментации. Стоит пояснить, что понимается под полезными данными. Для Ethernet полезными данными может выступать IP-пакет, для IP-пакета полезными данными может быть ICMP сообщение, TCP сегмент или UDP дейтаграмма.

Обычно, когда говорят об MTU, имеют ввиду MTU канального уровня, его еще называют Hardware MTU, но про MTU можно говорить в принципе на любом уровня, начиная с транспортного и ниже. Вот так будет выглядеть MTU протоколов разных уровней, если мы исходим из определения, что MTU это полезные данные, переносимые внутри PDU:

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Примеры PDU и MTU(MTU IP-пакет на рисунке показан неверно, ниже пояснение)

Но на самом деле в IP определение MTU отличается от Ethernet или TCP. Для IP MTU это пользовательские данные плюс заголовок пакета, поэтому картинка должна быть такой:

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Верный пример PDU и MTU

Но тогда непонятно: в чем разница между канальным и сетевым MTU? Разница будет видна при различного рода туннелях, мне ближе всего MPLS, поэтому вот пример MTU с MPLS:

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Пример PDU/MTU с MPLS заголовками

Здесь мы видим, что MPLS заголовки включаются в MTU кадра, но не являются MTU пакета, для MPLS на оборудование можно задавать свой собственный MTU, но это отдельная история. Понятно, что чем больше в PDU выделено места для пользовательских данных по сравнению со служебными, тем для получателя услуги скорость будет выше. Вот здесь есть краткий обзор того, как различные размеры кадров и их MTU влияют на скорость для конечных хостов (правда не на нашем языке).

Примечание

Из выше описанного понятно, что MTU на канальном уровне не включает в себя байты, выделенные под Ethernet заголовок, но есть исключения. Например, оборудование Cisco под управлением ОС IOS XR считает канальный MTU не как размер полезной нагрузки в Ethernet кадре, а как размер полезной нагрузки + Ethernet заголовок. С этим нужно быть внимательным, особенно когда настраиваются протоколы, для которых MTU имеет значение, например, OSPF.

Максимальный размер MTU

Вопрос не такой однозначный и простой. Будем исходить из того, что MTU не может быть бесконечным, на это есть много причин, вот некоторые из них:

  1. Некоторые алгоритмы, которые используются для расчета контрольных сумм, при больших размерах пакетов могут давать сбой.

  2. Когда-то раньше, когда в Ethernet сетях были топологии с общей шиной, а сети строились на хабах и повторителях, большие кадры и пакеты были невыгодны, поскольку в таких сетях пока один из участников канальной среды вел передачу, все остальные его слушали и молчали.

  3. Размер буфера портов у транзитных узлов не бесконечен, чем больше пакет, тем больше места он будет занимать в буфере, а слишком большие буферы делать нерационально, поскольку долго хранящийся в буфере пакет может стать не актуальным для получателя.

  4. Потеря маленького пакета не так критична, как большого, вероятность получить искажение большого пакета выше, чем маленького.

Семейство Ethernet, а также фичи и костыли, которые к Ethernet приделываются, как правило, описываются стандартами IEEE. Самый базовый стандарт Ethernet это IEEE 802.3, он дает следующие верхнее ограничение на размер Ethernet кадра в целом и его MTU в частности:

  1. Размер кадра не должен превышать 1518 байт.

  2. MTU кадра должен быть 1500 байт.

В большинстве случаев можно быть уверенным в том, что кадры с полезной нагрузкой в 1500 байт пролезут через любую сеть.

Примечание

Большинство документов, описывающих IP это RFC (request for comment), изначально идея RFC была в том, что кто-то придумал какую-то фичу или метод, описал как ее реализовать и этот кто-то направляет своим коллегам запрос на комментарии к тому, что он придумал. Сейчас RFC можно считать рекомендациями к реализации той или иной фичи. Ethernet же описывается стандартами, полагаю, разница между словом рекомендация и стандарт особых пояснений не требует.

Минимальный размер MTU

Теперь поговорим о нижем ограничение для MTU. Если коротко, то оно есть и, как правило, это ограничение описывается стандартом протокола. Связаны такие ограничения с физикой нашего мира: дело в том, что сетевые устройства обмениваются физическими сигналами, которые генерируются и распространяются по среде передачи данных не мгновенно(хоть и на скоростях близких к скорости света в вакууме), если говорить про Ethernet, то здесь минимальный размер кадра связан с доменом коллизий (участком сети, где два кадра могут столкнуться друг с другом). Дело в том, что размер кадра должен быть настолько большим, чтобы отправителю кадра в случае возникновения коллизии хватило времени на детектирования коллизии.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Пример коллизий в сетях с Ethernet с общей шиной

Если хотите деталей, то поищите информацию про CSMA/CD. На современном оборудование метод CSMA/CD реализован, но зачастую не используется, в виду того, что домен коллизий ограничен линком между двумя конкретными устройствами, а на линке, как правило, работает full duplex (если вы переводите линк в half, то вопрос обнаружения коллизий на этом линке снова становится актуальным), т.е. для приема своя физика, а для передачи своя, что исключает возможности появления коллизий.

Для Ethernet есть множество стандартов, которые описывают различные физические реализации этого самого Ethernet, у разных стандартов может быть свой минимальный размер кадра, а может быть и так, что стандарты разные, но размер кадра одинаковый.

Для стандартов Ethernet со скоростями 10Mbps и 100Mbps минимальный размер кадра равен 64 байта, для стандартов Ethernet со скоростью 1000Mbps по меди(1000BASE-T) минимальный размер кадра увеличен до 512 байт, а если не ошибаюсь, то для стандарта 1000BASE-X(оптика) минимальный размер кадра 416 байт.

Насколько мне известно, стандарты, описывающие реализацию Ethernet на скоростях 2.5Gbps и выше, не предусматривают возможность работы в режиме half duplex, а это означает, что ограничений, которые накладывал CSMA/CD на размер кадра в этих стандартах нет. Сам не тестировал, но встречал упоминания о том, что для Ethernet кадров из стандартов для скоростей выше 1Gbps наследуется минимальный размер кадра в 512 байт.

Если говорить про связку IP+Ethernet, то здесь минимальные MTU для IP такие:

  1. Для IPv4 минимальный MTU не может быть меньше 68 байт. Иногда можно найти информацию о том, что для IPv4 минимальный MTU равен 576 байт, но это не так, на самом деле 576 байт это гарантированный размер IP-пакета, который должен смочь обработать получатель, то есть хост в IP должен уметь обрабатывать пакеты размером 576 байт, а вот пакеты больших размеров он уже не должен уметь обрабатывать.

  2. Для IPv6 минимальный MTU не может быть меньше 1280 байт.

Почему я не писал явные размеры минимальных MTU станет понятно ниже, когда речь пойдет про размеры Ethernet заголовка.

Размер Ethernet заголовка

Есть группа стандартов под номером IEEE 802, эта группа описывает сети LAN(local area network) и MAN(metropolitan area network). В этой группе есть подгруппа 802.3, в которой собрано всякое разное про Ethernet, плюс есть подгруппа 802.1, которая тоже будет нам интересна в контексте обсуждения Ethernet заголовка.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Группа стандартов IEEE 802

Таблица выше была взята с википедии. Группы 802.3 и 802.1 включают в себя некоторые стандарты, которые увеличивают размер Ethernet кадра за счет добавления или расширения служебных полей, это означает, что зачастую для того, чтобы пропускать такие кадры, оборудование должно поддерживать этот стандарт, эти стандарты как правило не требуют увеличения MTU на линках, но лучше заглянуть в документацию оборудования. Вот примеры таких стандартов.

IEEE 802.1q, 802.1p, 802.3ac

Первым делом стоит сказать про 802.1q, он описывает технологию VLAN, которая реализуется за счет добавления нового поля в заголовок кадра, и есть 802.1p, который описывает методы приоретизации трафика. Стандарт 802.3ac предписывает увеличение Ethernet-кадра на 4 байта, в этих четырех байтах как раз и содержится информация о влане и важности кадра.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Структура Ethernet кадра IEEE 802.1Q

IEEE 802.1ad

Стандарт 802.1ad известен больше как QinQ, он расширяет размер кадра как минимум до 1526 байт, этот стандарт позволяет добавлять в кадр две или более метки VLAN, при этом у каждой может быть свой приоритет. Метки и приоритеты как раз описаны в 802.1q и 802.1p. Как правило используют два влана, хотя, наверное, вы можете встретить сценарии с тремя и более тегами.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Структура Ethernet кадра IEEE 802.1AD

IEEE 802.1ah

Стандарт 802.1ah более известный как PBB или MACinMAC.

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Структура Ethernet кадра IEEE 802.1AH

IEEE 802.1ae

Стандарт 802.1ae (технология MAC Security) позволяет генерировать кадры размером 1550 байт, 16 байт выделяется под заголовок MAC Security и 16 байт под поле ICV(контрольная сумма).

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Структура Ethernet кадра IEEE 802.1AE

Хороший обзор Ethernet кадров различных стандартов и с различными доп. полями можно почитать здесь. Картинки выше взяты оттуда. А вот сравнение размеров различных Ethernet заголовков:

Что такое MTU? Размер Ethernet кадра и IP пакета Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Ethernet, Кадр, Длиннопост

Сравнение размеров Ethernet кадров различных стандартов

Изображение было взято отсюда. На самом деле размер кадра может больше, чем я описывал ранее. Кадры больше стандартных имеют даже свои названия, например, Baby Giant или Jumbo Frame, названия не официальные.

Baby Giant обычно называются кадры размером от 1519 до 1600 байт. Джамба фреймами обычно называются кадры больше 1518 байт. Не всё оборудование умеет работать с jumbo кадрами, как правило их поддержку нужно включить. Стандартов по обработке jumbo фреймов никаких нет, всё на совести вендора.

Теоретический максимально возможный размер Jumbo Frame ограничивает поле FCS и алгоритм CRC32(Cyclic Redundancy Check), который используется для проверки целостности данных в Ethernet, из-за этих ограничений размер не может превышать11455 байт. Если говорить о реальных реализациях, то современные роутеры позволяют задать канальный MTU немногим более 9000 байт.

И в завершении стоит сказать про стандарт 802.3as. Проблема Ethernet в том, что на ранних стадиях он развивался реактивно: возникала потребность в какой-то фичи, и под эту потребность придумывался новый заголовок, в котором вводились новые поля и этот новый заголовок был больше исходного. В итоге такое развитие привело к созданию стандарта 802.3as, он увеличивает размер кадра до 2000 байт, грубо говоря и не вдаваясь в детали, этот стандарт говорит о том, что кадр размером 2000 байт и MTU не более 1500 байт должен быть обработан любым Ethernet интерфейсом.

Вопросов к данному посту нет, поскольку информация здесь больше справочная, чем на понимание логики работы.

Видео версия

Для тех, кому проще слушать и смотреть

Вроде как всё, спасибо что дочитали!

Показать полностью 11 1
1

Поле Internet Checksum. Как IP считает контрольную сумму

Господа, дамы, здравствуйте!

Ниже поговорим о контрольной сумме в IP и посмотрим на то, как узлы вычисляют ее. Напомню, что IP не контролирует целостность пользовательских данных, контрольная сумма считается только для заголовка. Поскольку на каждом транзитном узле заголовок пакета изменяется, каждый узел пересчитывает контрольную сумму с учетом внесенных изменений при отправке пакета дальше.

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Плюс нужно не забывать: контрольная сумма является одним из полей заголовка, но для расчета контрольной суммы узел обнуляет значение этого поля.

Алгоритм расчета контрольной суммы в IP-заголовке

Сразу хочу обратить внимание, что ниже упрощенная интерпретация алгоритма по расчету контрольной суммы, если вам нужны строгие определения или же примеры реализации на различных языках программирования, вам нужно почитать RFC 1071.

  1. Заголовок разбивается на слова по 16 бит слева направо.

  2. Поле контрольной суммы само равно 16 бит, узел, получивший пакет, для расчета контрольной суммы не должен учитывать значение поля контрольная сумма.

  3. Таким образом если у заголовка нет опций, а само поле контрольной суммы мы отбрасываем, то получается 9 слов по шестнадцать бит, в общем виде одно слово будем обзывать буквой W, таким образом у нас есть слова от W0 до W8.

  4. Чтобы узнать контрольную сумму мы должны сперва сложить все слова: Wsum = W0+W1+W2+W3+W4+W5+W6+W7+W8. Правило о том, что от перестановки мест слагаемых сумма не меняется здесь тоже работает.

  5. Если Wsum получилась размером больше, чем 16 бит, получившееся число разбивается на два слова по 16 бит, которые затем складываются между собой(и так нужно будет повторять до тех пор, пока не получим число 16 бит).

  6. И наконец нужно выполнить операцию "исключающего ИЛИ" между шестнадцатеричным числом FFFF и получившимся Wsum. Это и будет контрольная сумма.

Если честно мне никогда не был понятен алгоритм, описанный словами. Поэтому ниже пример.

Рассчитываем контрольную сумму на калькуляторе

Чтобы проверить свои расчет, проще всего сделать дамп пакета, в котором контрольная сумма уже посчитана.

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Дамп IP-пакета для расчета контрольной суммы

Слева в Wireshark мы видим представление пакетов удобное нам, человекам, а справа мы видим байтовой представление пакетов, где каждый байт представлен числом в шестнадцатеричной системе счисления, минимальное значение одного байта 00(ноль в десятичной), максимальное его значение FF(255 в десятичной), но для расчета нас интересуют слова по два байта.

Если слева нажать на строку Internet Protocol Version 4..., то справа нам подсветятся байты, соответствующие IP-заголовку. Байты я разбил на слова зелеными рамками, красная рамка это поле контрольная сумма и его мы отбросим.

Итого у нас получилась вот такая сумма:

Wsum = 4500 + 54 + 413C + 4000 + 3D01 + C0A8 + 010F + C0A8 + 020C = 287FC

Не забудьте переключить калькулятор в режим HEX, чтобы выполнять вычисления в шестнадцатеричном формате:

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Складываем слова IP-заголовка

Число 287FC в шестнадцатеричной системе счисления занимает места больше, чем 16 бит, а значит надо разбить его на два числа по 16 бит и сложить их, делается это так:

Wsum = 0002 + 87FC = 87FE

Чтобы записать шестнадцатеричное число 87FE в двоичном виде шестнадцати бит хватит, а значит нам надо сделать FFFF XOR 87FE, здесь XOR это ИСКЛЮЧАЮЩЕЕ ИЛИ, подробнее про операцию можете почитать на вики, мы же сейчас возьмем калькулятор, переведем своё число в двоичный вид и сделаем XOR с двоичным числом 1111111111111111 (в HEX на калькуляторе можно сделать то же самое).

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Выполняем операцию исключающее ИЛИ

В результате получилась та же контрольная сумма, что и насчитал роутер (7801 в шестнадцатеричном виде):

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Контрольная сумма IP-заголовка посчитана

В общем, ничего сложного нет.

Для самостоятельного расчета

Теперь посмотрим на этот же пакет в дампе, который был сделан на следующем узле по пути его следования, это означает, что у него должен уменьшился TTL на 1 и должна пересчитаться контрольная сумма.

Поле Internet Checksum. Как IP считает контрольную сумму Сисадмин, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Урок, Обучение, YouTube, Образование, Видео, Длиннопост

Дамп пакета на следующем узле

Оранжевым выделено поле TTL, его значение изменилось(3c в шестнадцатеричной это 60 в десятичной), красным выделена контрольная сумма, у нее изменился первый байт, все остальные байты заголовка без изменений. Для закрепления алгоритма попробуйте самостоятельно рассчитать контрольную сумму этого заголовка.

Видео версия

Для тех, кому проще смотреть, чем читать.

Показать полностью 6 1
9

Настройка лабы в EVE-NG к посту о Time to Live

Господа, дамы, здравствуйте!

Предыдущая публикация была о TTL и в ней для демонстрации работы я использовал небольшую лабу, собранную в EVE-NG, этот пост для тех, кто хочет самостоятельно собрать такую же лабу и немного поэксперементировать. Ниже мы разберемся с некоторыми особенностями настроек роутеров и хостов лабы TTL.

Чего не будет в посте

Здесь не будет гайда о том, как установить виртуалку и поднять на ней EVE-NG, т.к. таких гайдов много, плюс есть официальная документация.

  1. Вот на этом ютуб канале есть много гайдов на русском языке по EVE.

  2. Вот раздел документации на официальном сайте. Если вы планируете использовать версию EVE-NG для бедных, то рекомендую начать с раздела Community Cookbook, в интернете есть где-то даже машинный перевод этой документации.

В лабе используются хосты, поднятые на образах Debian 10, но гайдов по работе с Linux здесь тоже не будет, я лишь опишу действия, которые делал, чтобы поднять лабу. Если хотите разобраться со всеми этими линуксами, то рекомендую посты пользователя @doatta. Есть еще два хороших канала на Ютубе: Кирилла Семаева и UNИX, у второго есть еще свой сайт.

В лабе протоколом маршрутизации выбран OSPF, сейчас я лишь покажу как его настроить, чтобы заработало, но детальных пояснений не будет, возможно, когда-нибудь я доберусь до OSPF.

Настройка роутеров

В целом, в настройках роутеров ничего сложно нет, вот основные моменты:

  1. Каждому роутеру был задан Loopback адрес с маской /32, каждый октет адреса равен номеру роутера, сделано это было просто для удобства, например, для R3 это 3.3.3.3/32.

  2. На интерфейсах роутеров были назначены р2р сети, принцип назначения объяснялся в посте про TTL.

  3. Маршрутизация использовалась динамическая, протокол OSPF.

  4. Петля делалась за счет статического маршрута на R4.

Но, наверное, мне нужно было бы начать с напоминания топологии:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Топология сети, которую будем настраивать

IP настройки на интерфейсах

Вот так настраиваются Loopback интерфейсы на роутерах (на примере R5, фактически для этой лабы Lo адреса и не нужны):

R5#conf t

R5(config)#interface lo0

R5(config-if)#description system

R5(config-if)#ip address 5.5.5.5 255.255.255.255

На других роутерах меняется только IP-адрес. IP настройки на интерфейсах роутеров Cisco подробно рассматривались здесь. Но, если что, вот пример настроек на физических интерфейсах R5:

interface FastEthernet0/0

description to_Host_2

ip address 192.168.2.17 255.255.255.0

speed auto

full-duplex

interface FastEthernet0/1

description to_R4

ip address 10.4.5.5 255.255.255.0

speed auto

full-duplex

Настройки OSPF

Детально про настройку OSPF говорить не буду. Но его конфиг я покажу, вот так он выглядит на R5:

R5#conf t

R5(config)#router ospf 100

R5(config-router)#network 5.5.5.5 0.0.0.0 area 0

R5(config-router)#network 10.0.0.0 0.255.255.255 area 0

R5(config-router)#network 192.168.2.0 0.0.0.255 area 0

На R1 строку network 192.168.2.0 0.0.0.255 area 0 нужно будет заменить на network 192.168.1.0 0.0.0.255 area 0. На других роутерах третья команда network не нужна.

Краткое пояснение по командам OSPF

Командной router ospf 100 мы запускаем процесс OSPF на роутере и даем ему номер 100, как понимаете, на роутере может работать несколько разных процессов OSPF, при этом на двух соседних роутерах номера их OSPF процессов могут не совпадать, но обычно их делают одинаковыми для удобства.

Команда network довольно интересная, первое число, похожее на IP-адрес, это номер сети, второе число, похожее на маску сети, на самом деле wildcard mask, на русский язык ее переводят как обратная маска или инверсная маска, но сути ее работы это название не отражает. Когда-нибудь я про не напишу, сейчас отправлю в Яндекс или Гугл.

Можно сказать, что команда network это правило для маршрутизатора, роутер перебирает свои IP-интерфейсы и проверяет: попадают ли они под правило, заданные командой network или нет. Если интерфейс попадает под правило, то на нем включается OSPF процесс, интерфейс включается в регион, который указан после ключевого слова area, а информация о сети, которая настроена на этом интерфейсе, будет рассказана другим маршрутизаторам, с которыми установлено OSPF соседство.

Примечание:

Такая конфигурация OSPF подходит для лабы, но не подходит для реальных сетей. Как минимум, потому, что считается небезопасной, дело в том, что командой network 192.168.2.0 0.0.0.255 area 0 мы включаем OSPF на интерфейсе fa0/0, и роутер будет пытаться найти OSPF соседей за портом fa0/0. Fa0/0 это порт в сторону клиента, за которым на самом деле может оказаться злоумышленник.

Выход из такой ситуации у Cisco называется passive-interface, у Huawei такая же фича называется silent-interface. Вообще, хорошим тоном с точки зрения безопасности сети, является включение OSPF руками на тех сетевых линках, где он вам действительно нужен, а сети с клиентских интерфейсов, если это действительно требуется, вкидывать процессу OSPF через механизм редистрибьюции маршрутов.

Под правило network 5.5.5.5 0.0.0.0 area 0 попадает интерфейс Lo0, на нем включается OSPF процесс, сам интерфейс включается в нулевой регион, его адрес относится к сети 5.5.5.5/32, R5 начинает рассказывать всем своим OSPF соседям о том, что у него есть такая сеть.

Посмотреть OSPF интерфейсы на роутере можно так:

R5#show ip ospf int br

Interface PID Area IP Address/Mask Cost State Nbrs F/C

Fa0/0 100 0 192.168.2.17/24 10 DR 0/0

Fa0/1 100 0 10.4.5.5/24 10 DR 1/1

Lo0 100 0 5.5.5.5/32 1 LOOP 0/0

Если нужна какая-то более детальная информация по интерфейсу:

R5#show ip ospf int fa0/1

FastEthernet0/1 is up, line protocol is up

Internet Address 10.4.5.5/24, Area 0

Process ID 100, Router ID 5.5.5.5, Network Type BROADCAST, Cost: 10

Transmit Delay is 1 sec, State DR, Priority 1

Designated Router (ID) 5.5.5.5, Interface address 10.4.5.5

Backup Designated router (ID) 4.4.4.4, Interface address 10.4.5.4

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

oob-resync timeout 40

Hello due in 00:00:01

Supports Link-local Signaling (LLS)

Cisco NSF helper support enabled

IETF NSF helper support enabled

Index 2/2, flood queue length 0

Next 0x0(0)/0x0(0)

Last flood scan length is 1, maximum is 2

Last flood scan time is 0 msec, maximum is 0 msec

Neighbor Count is 1, Adjacent neighbor count is 1

Adjacent with neighbor 4.4.4.4 (Backup Designated Router)

Suppress hello for 0 neighbor(s)

Для создания петли маршрутизации на роутере R4 прописывался вот такой статический маршрут:

R4#sh run | in ip ro

ip route 192.168.2.12 255.255.255.255 10.3.4.3

R4#

На статиках сейчас останавливаться не буду, скоро будет отдельный пост.

Настройка и подготовка хостов

Теперь о подготовке и настройке хостов. Я не сисадмин Linux, поэтому, возможно, действия, описанные ниже, можно сделать более оптимально и просто, но тут уж как смог.

Для начала разберемся, где взять образы дистрибутивов Linux для EVE-NG, во-первых, на официальном сайте, там же есть гайд: текст + видео. На Ютуб канале, который был обозначен в начале поста есть видео о том, как подготовить свой дистрибутив для эмуляции в EVE-NG.

Настройки EVE-NG для хостов

Теперь о некоторых настройках в EVE-NG, которые я использовал для хостов. При первом запуске образа Linux в EVE-NG для подключения к хосту придется использовать VNC. Мне через VNC с отдельными окнами для каждого хоста работать было неудобно, поэтому я решил проблему так: на эмулируемом образе создал два порта, один из которых был подключен в лабу, второй был подключен в мою домашнюю сеть. На порт, который смотрит в домашнюю сеть, IP-адрес прилетает по DHCP от домашнего роутера, по этому адресу я и подключался к машине в дальнейшем.

Вот первичные настройки виртуальной машины в EVE:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Первичные настройки в EVE-NG для хостов

Чтобы эмулируемые в лабе устройства могли получать адреса от физического роутера, в сетевых настройках VMWare для виртуалки EVE-NG должен быть включен bridge. Настройка производится вот здесь, вот так:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Нужно поставить чекрыжик на Bridged... и галку на Replicate physical...

На топологию лабы нужно добавить интерфейс/устройство, через которое виртуальные хосты, могли бы подключаться к реальной физической сети, надо сделать так: по рабочей области жмем ПКМ, в меню выбираем Network, в появившемся окне в списке Type выбираем как на скрине ниже.

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Добавляем устройство для организации связности между виртуальной сетью и физической

Образ Linux одним линком нужно будет подключить к появившемуся облаку, это облако свяжет его с физической сетью.

На официальном сайте EVE образ Debian идут с графическим интерфейсом, но все примеры настроек сделаны в эмуляторе терминала, во-первых, это быстрее, во-вторых, я не знаю как делать сетевые настройки в Linux через графику.

Если вы скачали образ Debian с официального сайта EVE (а я так и сделал), то там уже будет создан пользователь с логином user и паролем Test123.

Настройка sudo на хостах

Мне удобнее работать через sudo, в Debian sudo нужно включить, вот перечень команд для этого:

su

#ввести пароль Test123

apt install sudo

exit

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Установка sudo в Debian 10

Для пользователя с логином user правка файла /etc/sudoers не требуется, но если хотите создать нового пользователя и работать из-под него, то не забудьте отредактировать файл sudoers, добавив запись аналогичную той, что сделана для user.

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Содержимое файла sudoers

Сетевые настройки хостов

Теперь к сетевым настройкам на хостах. Командой ip a смотрим сетевые интерфейсы, которые сейчас есть.

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Список IP-интерфейсов

Интерфейс ens3 соответствует интерфейсу e0 на топологии EVE-NG, интерфейс ens4 это e1, этот мануал я пишу уже после того, как собрал изначальную схему и записал видео, т.е. ниже буду рассказать как добавить третий образ на схему (для исходных двух хостов отличаться будут только настраиваемые IP-адреса и прописываемые статики), физически я его подключил так:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Настраиваем узел с именем Linux

Перед тем как продолжать докладываю, этих ваших команд в Linux вагон и маленькая тележка, список команд можно увеличивать за счет установки новых программ и утилит, но базовые команды по работе с сетью и интерфейсами можно найти в этой шпаргалке на сайте Red Hat.

Я хочу чтобы на ens3 мне приходили настройки из моей реальной сети по DHCP, давайте это организуем, пишем команду:

sudo nano /etc/network/interfaces

В данном файле можно делать различные сетевые настройки, VIM не использую, потому что не хочу писать гайд о том, как из него выйти. В этом файле пишем настройки для интерфейса ens3, пишем их так:

# to_local_network

allow-hotplug ens3

iface ens3 inet dhcp

Строка с решеткой это просто комментарий, вторая строка говорит том, что ens3 надо включать сразу как включится образ, третья строка заставляет машину начинать слать DHCP запросы через ens3, чтобы получить свои сетевые настройки. В файле это выглядит так:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Настройка получения IP-адресов по DHCP в Debian 10

Далее нажимаем Ctrl+O чтобы сохранить, Ctrl+X закрыть файл. Если вы после редактирования напишите ip a, то увидите, что сетевые настройки на ens3 по DHCP не прилетают, на самом деле они и не запрашиваются, значит нужно передернуть, передергивать интерфейс будем такой командой:

sudo ifup ens3

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Смотрим настройки сетевых интерфейсов после передергивания

После этого мы видим, что адрес был выдан и это 192.168.0.130. Всё, по этому адресу мы можем подключаться при помощи SSH клиента, который установлен на основной операционной системе, плюс образ Linux теперь имеет доступ к интернету.

Настройки SSH на клиенте, через который мы будем подключаться к Debian, стандартные, в SecureCRT они находятся здесь:

Настройка лабы в EVE-NG к посту о Time to Live Сисадмин, Linux, Debian, Компьютерные сети, IT, Хост, Роутер, IP, Протокол, Сети, Связь, Телеком, Данные, Системное администрирование, Инженер, Длиннопост

Настройки SSH на клиенте

Для того чтобы была возможность подключаться по SSH на виртуальной машине должен быть запущен SSH сервер, который должен слушать 22 порт на предмет входящих подключений, сам порт должен быть открыть, включен ли сервер и какой порт он слушает можно проверить так:

user@debian:~$ sudo systemctl status ssh

● ssh.service - OpenBSD Secure Shell server

Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)

Active: active (running) since Sat ... CDT; 39min ago

Docs: man:sshd(8)

man:sshd_config(5)

Process: 471 ExecStartPre=/usr/sbin/sshd -t (code=exited, status=0/SUCCESS)

Main PID: 491 (sshd)

Tasks: 1 (limit: 4689)

Memory: 5.7M

CGroup: /system.slice/ssh.service

└─491 /usr/sbin/sshd -D

debian systemd[1]: Starting OpenBSD Secure Shell server...

debian sshd[491]: Server listening on 0.0.0.0 port 22.

debian sshd[491]: Server listening on :: port 22.

Строка Active: active (running) означаете, что сервер включен, по портам, полагаю, не нужно пояснять. Посмотреть открытые tcp/udp порты можно еще и так:

ss -lnput #UDP+TCP

ss -lu #только UDP

ss -tl #только TCP

Если не установлен ssh сервер его надо установить, в Debian и ему подобных дистрибутивах это делается так:

sudo apt update

sudo apt install openssh-server

Если 22 порт закрыт, его надо открыть, вариантов почему порт закрыт, может быть много, например, у вас установлен фаервол ufw и он не разрешает подключение к 22 порту, открыть порт можно будет так:

sudo ufw allow ssh

С вопросом подключения по SSH мы разобрались, нам надо теперь разобраться с интеграцией образа Linux в лабу, для этого на ens4 нужно назначить IP-адрес:

sudo nano /etc/network/interfaces

# to_lan_network

allow-hotplug ens4

iface ens4 inet static

address 192.168.3.25/24

# gateway 192.168.3.1

up ip route add 192.168.1.0/24 via 192.168.3.1 #первый статик

up ip route add 192.168.2.0/24 via 192.168.3.1 #второй статик

up ip route add 10.0.0.0/8 via 192.168.3.1 #третий статик

Строка iface ens3 inet static говорит о том, что адрес на интерфейс надо назначить руками, строка address 192.168.3.25/24 сообщает операционной системе какой IP-адрес и маску мы хотим использовать на этом интерфейсе. Строка # gateway 192.168.3.1 закомментирована, если убрать решетку, то машина будет считать, что за портом ens4 находится шлюз по умолчанию. Эту строку я закомментировал, потому что мой домашний роутер по DHCP сообщил, что именно он является шлюзом по умолчанию для данного хоста(а через домашний роутер осуществляется выход в интернет, а обычным домашним компьютерам и роутерам живется проще, когда они дорогу в интрнет знают не как full view, а как маршрут по умолчанию).

В связи с тем, что домашний роутер является шлюзом по умолчанию, но третий хост все-таки должен знать как добраться до других устройств лабы, пришлось писать и три статических маршрута: первый нужен чтобы был доступен узел Host_1, второй нужен чтобы был доступен Host_2, третий нужен чтобы были доступны p2p сети, настроенные между роутерами между роутерами. Если нужно чтобы были доступны Loopback интерфейсы роутеров, статики до них нужно тоже прописать.

Посмотрим применились ли настройки на ens4:

user@debian:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:00 brd ff:ff:ff:ff:ff:ff

inet 192.168.0.130/24 brd 192.168.0.255 scope global dynamic ens3

valid_lft 4963sec preferred_lft 4963sec

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:01 brd ff:ff:ff:ff:ff:ff

inet6 fe80::250:ff:fe00:801/64 scope link noprefixroute

valid_lft forever preferred_lft forever

user@debian:~$

Наших настроек на ens4 не видим, статических маршрутов, которые мы добавили, тоже не увидим:

user@debian:~$ ip route show

default via 192.168.0.1 dev ens3

192.168.0.0/24 dev ens3 proto kernel scope link src 192.168.0.130

user@debian:~$

Надо передернуть, скажете вы:

user@debian:~$ sudo ifup ens4

user@debian:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:00 brd ff:ff:ff:ff:ff:ff

inet 192.168.0.130/24 brd 192.168.0.255 scope global dynamic ens3

valid_lft 4476sec preferred_lft 4476sec

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:01 brd ff:ff:ff:ff:ff:ff

inet 192.168.3.25/24 brd 192.168.3.255 scope global ens4

valid_lft forever preferred_lft forever

user@debian:~$

И будете правы, получилось! Сразу после этого в таблице маршрутизации должны будут появиться маршруты, которые мы задавали статикой:

user@debian:~$ ip route show

default via 192.168.0.1 dev ens3

10.0.0.0/8 via 192.168.3.1 dev ens4

192.168.0.0/24 dev ens3 proto kernel scope link src 192.168.0.130

192.168.1.0/24 via 192.168.3.1 dev ens4

192.168.2.0/24 via 192.168.3.1 dev ens4

192.168.3.0/24 dev ens4 proto kernel scope link src 192.168.3.25

user@debian:~$

Если не появились, надо будет напечатать в эмуляторе терминала три команды из файла interfaces, но уже без ключевого слова up, вот так:

ip route add 192.168.1.0/24 via 192.168.3.1

ip route add 192.168.2.0/24 via 192.168.3.1

ip route add 10.0.0.0/8 via 192.168.3.1

Чтобы новый хост получил связность с другими узлами сети, нужно не забыть выполнить настройки на R3(донастроить OSPF + настроить интерфейс в сторону хоста), показывать я это уже не буду.

Для просмотра базовой информации о сетевых и канальных параметрах есть четыре команды:

ПОСМОТРЕТЬ СЕТЕВЫЕ НАСТРОЙКИ:

user@debian:~$ ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:00 brd ff:ff:ff:ff:ff:ff

inet 192.168.0.130/24 brd 192.168.0.255 scope global dynamic ens3

valid_lft 4166sec preferred_lft 4166sec

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:01 brd ff:ff:ff:ff:ff:ff

inet 192.168.3.25/24 brd 192.168.3.255 scope global ens4

valid_lft forever preferred_lft forever

ПОСМОТРЕТЬ КАНАЛЬНЫЕ ПАРАМЕТРЫ:

user@debian:~$ ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:08:00 brd ff:ff:ff:ff:ff:ff

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 00:50:00:00:08:01 brd ff:ff:ff:ff:ff:ff

ARP ТАБЛИЦА:

user@debian:~$ ip neigh show

192.168.0.101 dev ens3 lladdr 8c:55:4a:a9:b9:dd REACHABLE

192.168.0.1 dev ens3 lladdr b#:#0:24:#0:#f:#0 STALE

ТАБЛИЦА МАРШРУТИЗАЦИИ:

user@debian:~$ ip route show

default via 192.168.0.1 dev ens3

10.0.0.0/8 via 192.168.3.1 dev ens4

192.168.0.0/24 dev ens3 proto kernel scope link src 192.168.0.130

192.168.1.0/24 via 192.168.3.1 dev ens4

192.168.2.0/24 via 192.168.3.1 dev ens4

192.168.3.0/24 dev ens4 proto kernel scope link src 192.168.3.25

user@debian:~$

Давайте проверим доступность R3:

user@debian:~$ ping 192.168.3.1

PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.

64 bytes from 192.168.3.1: icmp_seq=1 ttl=255 time=9.88 ms

64 bytes from 192.168.3.1: icmp_seq=2 ttl=255 time=11.1 ms

64 bytes from 192.168.3.1: icmp_seq=3 ttl=255 time=2.07 ms

^C

--- 192.168.3.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 5ms

rtt min/avg/max/mdev = 2.074/7.673/11.067/3.988 ms

user@debian:~$

Успех, а теперь попингуем Host_1 и Host_2:

PING 192.168.1.15 (192.168.1.15) 56(84) bytes of data.

^C

--- 192.168.1.15 ping statistics ---

4 packets transmitted, 0 received, 100% packet loss, time 75ms

user@debian:~$

user@debian:~$ ping 192.168.2.12

PING 192.168.2.12 (192.168.2.12) 56(84) bytes of data.

^C

--- 192.168.2.12 ping statistics ---

4 packets transmitted, 0 received, 100% packet loss, time 68ms

user@debian:~$

А вот хосты не доступны. Вопрос: почему? На роутерах настройки корректные. Что надо сделать, чтобы эти узлы стали доступны?

Напоследок дам еще некотрые пояснения. Сетевые настройки мы выполняли в файле /etc/network/interfaces для того, чтобы после перезагрузки виртуальной машины они сохранились. Но адреса можно настраивать временно без сохранения в настроек в файл.

В примере ниже адрес 192.168.3.44/24 добавляется на интерфейс ens4 как secondary, поскольку основной адрес у нас уже задан, а add означает добавить. Вторичный адрес будет активен до перезагрузки.

user@debian:~$ sudo ip address add 192.168.3.44/24 dev ens4

user@debian:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:00 brd ff:ff:ff:ff:ff:ff

inet 192.168.0.130/24 brd 192.168.0.255 scope global dynamic ens3

valid_lft 6906sec preferred_lft 6906sec

3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:50:00:00:08:01 brd ff:ff:ff:ff:ff:ff

inet 192.168.3.25/24 brd 192.168.3.255 scope global ens4

valid_lft forever preferred_lft forever

inet 192.168.3.44/24 scope global secondary ens4

valid_lft forever preferred_lft forever

user@debian:~$

На этом, собственно, всё. Видео к данном посту нет и не планировалось.

Показать полностью 11
12

#005 Time to Live или как IP защищается от петель маршрутизации

Господа, дамы, здравствуйте!

В прошлом видео мы разобрались со структурой IP-пакета в целом, но о некоторых полях стоит поговорить отдельно и посмотреть на них более пристально, одним из таких полей на мой взгляд является TTL, о котором далее.

Зачем нужно поле TTL?

Назначение поля TTL довольно простое: не допустить бесконечного хождения пакета по сети в том случае, если произошла петля маршрутизации. Особенность этого поля используется такими утилитами как tracert, mtr, winmtr. Рассматривать назначение этого поля будем на вот такой схеме:

#005 Time to Live или как IP защищается от петель маршрутизации YouTube, IP, Протокол, Сети, Компьютерные сети, Связь, Телеком, Данные, Системное администрирование, IT, Видео, Интернет, Сисадмин, Инженер, Длиннопост

Схема для изучения работы TTL

Но для начала коротко поясню как узлы работают с TTL. Представим, что пакет пришел на узел, он его получает и смотрит на значение поля TTL:

  • если значение равно единице, это значит, что пакет уже не будет передан следующему узлу: если пакет со значением 1 пришел на узел получатель, то он будет обработан и передан вышестоящему процессу, если же узел не конечный, то такой пакет будет уничтожен;

  • если значение поля TTL больше единицы, то пакет можно передать следующему узлу, если это требуется, либо если узел конечный, то он вскроет IP-заголовок и передаст содержимое пакета своему вышестоящему процессу;

  • если пакет нужно передать следующему узлу, то из значения TTL будет вычтена единица, произойдет пересчет контрольной суммы и пакет будет отправлен дальше.

Ничего сложного.

Топология сети и некоторые пояснения

Немного поясню по топологии сети: роутеры это образы Cisco 3725, хосты это образы Debian 10. На схеме показаны сети, которые настроены на линках между роутерами, для удобства нумерация была организована по следующему принципу:

1. Первый октет всегда равен десяти.

2. Второй октет это всегда меньший номер роутера.

3. Третий октет номер всегда номер большего роутера.

4. Четвертый октет равен номеру роутера.

5. Маска всегда /24.

Если бы у нас был линк R1 <-> R5. То на интерфейсе R1 был бы назначен адрес 10.1.5.1/24, на R5 такой: 10.1.5.5/24. Сети хостов назначил случайно и никакой системы в нумерации там нет.

Как работает Time to Live

Работает TTL на самом деле очень просто. Обратимся к нашей схеме. Узел Host_1 отправляет пакеты узлу Host_2, если значение TTL будет равно 4, то пакет будет уничтожен роутером R5, но если значение будет равно 5 или больше, то Host_2 получит пакет.

В этом легко убедиться, сделаем ping с Host_1. Для начала зададим TTL=4.

user@debian:~$ ping -t 4 192.168.2.12

PING 192.168.2.12 (192.168.2.12) 56(84) bytes of data.

From 10.4.5.5 icmp_seq=1 Time to live exceeded

From 10.4.5.5 icmp_seq=2 Time to live exceeded

From 10.4.5.5 icmp_seq=3 Time to live exceeded

From 10.4.5.5 icmp_seq=4 Time to live exceeded

From 10.4.5.5 icmp_seq=5 Time to live exceeded

From 10.4.5.5 icmp_seq=6 Time to live exceeded

^C

--- 192.168.2.12 ping statistics ---

6 packets transmitted, 0 received, +6 errors, 100% packet loss, time 13ms

Параметр t команды ping задает значение TTL. Трассировка подтверждает результаты пинга:

user@debian:~$ traceroute -m 4 192.168.2.12

traceroute to 192.168.2.12 (192.168.2.12), 4 hops max, 60 byte packets

1 192.168.1.155 (192.168.1.155) 1.836 ms 12.191 ms 22.688 ms

2 10.1.3.3 (10.1.3.3) 33.218 ms 43.708 ms 54.255 ms

3 10.3.4.4 (10.3.4.4) 64.698 ms 75.194 ms 85.180 ms

4 10.4.5.5 (10.4.5.5) 95.679 ms 106.314 ms 116.695 ms

Параметр m команде traceroute задает значение TTL, видим, что было пройдено четыре транзитных узла и пакет был уничтожен на четвертом (пятым узлом должен был быть Host_2). А теперь сделаем то же самое для TTL=5.

user@debian:~$ traceroute -m 5 192.168.2.12

traceroute to 192.168.2.12 (192.168.2.12), 5 hops max, 60 byte packets

1 192.168.1.155 (192.168.1.155) 4.686 ms 15.048 ms 25.488 ms

2 10.1.3.3 (10.1.3.3) 35.552 ms 46.068 ms 56.597 ms

3 10.3.4.4 (10.3.4.4) 67.063 ms 77.378 ms 87.591 ms

4 10.4.5.5 (10.4.5.5) 98.109 ms 108.930 ms 119.038 ms

5 192.168.2.12 (192.168.2.12) 129.545 ms 140.033 ms 150.561 ms

user@debian:~$

Успешный успех. Если мы попытаемся пропинговать адрес 192.168.2.17 с TTL=4, пинг у нас пройдет, т.к. этот адрес настроен на R5.

user@debian:~$ traceroute -t 4 192.168.2.17

traceroute to 192.168.2.17 (192.168.2.17), 30 hops max, 60 byte packets

1 192.168.1.155 (192.168.1.155) 3.694 ms 14.099 ms 24.630 ms

2 10.1.3.3 (10.1.3.3) 35.064 ms 45.116 ms 55.612 ms

3 10.3.4.4 (10.3.4.4) 66.078 ms 76.583 ms 87.074 ms

4 10.4.5.5 (10.4.5.5) 97.065 ms * *

user@debian:~$ ping -t 4 192.168.2.17

PING 192.168.2.17 (192.168.2.17) 56(84) bytes of data.

64 bytes from 192.168.2.17: icmp_seq=1 ttl=252 time=33.3 ms

64 bytes from 192.168.2.17: icmp_seq=2 ttl=252 time=34.0 ms

64 bytes from 192.168.2.17: icmp_seq=3 ttl=252 time=36.6 ms

64 bytes from 192.168.2.17: icmp_seq=4 ttl=252 time=49.1 ms

64 bytes from 192.168.2.17: icmp_seq=5 ttl=252 time=40.0 ms

^C

--- 192.168.2.17 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 10ms

rtt min/avg/max/mdev = 33.285/38.610/49.147/5.771 ms

user@debian:~$

Вопрос: почему четвертым хопом мы видим 10.4.5.5, а не 192.168.2.17? Ведь трассировку мы делаем до 192 адреса.

Создадим на сети петлю маршрутизации

Во всех этих примерах на сети не было петли маршрутизации, давайте ее создадим и посмотрим что будет. Петля маршрутизации была создана на линке R3 <-> R4, для этого со стороны R4 был добавлен вот такой статический маршрут в сторону R3:

ip route 192.168.2.12 255.255.255.255 10.3.4.3

Теперь пинг с первого хоста до второго не проходит:

user@debian:~$ ping 192.168.2.12

PING 192.168.2.12 (192.168.2.12) 56(84) bytes of data.

From 10.3.4.3 icmp_seq=1 Time to live exceeded

From 10.3.4.3 icmp_seq=2 Time to live exceeded

From 10.3.4.3 icmp_seq=3 Time to live exceeded

From 10.3.4.3 icmp_seq=4 Time to live exceeded

From 10.3.4.3 icmp_seq=5 Time to live exceeded

From 10.3.4.3 icmp_seq=6 Time to live exceeded

^C

--- 192.168.2.12 ping statistics ---

6 packets transmitted, 0 received, +6 errors, 100% packet loss, time 12ms

user@debian:~$

Вот трассировка, значение TTL по умолчанию для команды traceroute равно 30, так говорит man, петля подтверждает сведения, полученные из man:

user@debian:~$ traceroute 192.168.2.12

traceroute to 192.168.2.12 (192.168.2.12), 30 hops max, 60 byte packets

1 192.168.1.155 (192.168.1.155) 7.676 ms 17.985 ms 28.523 ms

2 10.1.3.3 (10.1.3.3) 38.995 ms 49.491 ms 59.979 ms

3 10.3.4.4 (10.3.4.4) 70.815 ms 80.969 ms 91.496 ms

4 10.3.4.3 (10.3.4.3) 101.949 ms 112.461 ms 122.974 ms

5 10.3.4.4 (10.3.4.4) 143.964 ms 154.418 ms 164.945 ms

6 10.3.4.3 (10.3.4.3) 175.578 ms 185.533 ms 142.816 ms

7 10.3.4.4 (10.3.4.4) 247.771 ms 258.300 ms 268.446 ms

8 10.3.4.3 (10.3.4.3) 278.805 ms 312.816 ms 323.311 ms

9 10.3.4.4 (10.3.4.4) 479.835 ms 626.355 ms 636.819 ms

10 10.3.4.3 (10.3.4.3) 556.593 ms 588.117 ms 598.524 ms

11 10.3.4.4 (10.3.4.4) 755.650 ms 797.647 ms 839.148 ms

12 10.3.4.3 (10.3.4.3) 849.913 ms 804.939 ms 805.743 ms

13 10.3.4.4 (10.3.4.4) 973.320 ms 1015.224 ms 962.095 ms

14 10.3.4.3 (10.3.4.3) 993.059 ms 952.398 ms 971.923 ms

15 10.3.4.4 (10.3.4.4) 1170.728 ms 1109.510 ms 1151.391 ms

16 10.3.4.3 (10.3.4.3) 1161.844 ms 1097.333 ms 1170.133 ms

17 10.3.4.4 (10.3.4.4) 1304.082 ms 1313.947 ms 1334.797 ms

18 10.3.4.3 (10.3.4.3) 1346.658 ms 1300.740 ms 1321.627 ms

19 10.3.4.4 (10.3.4.4) 1530.698 ms 1544.993 ms 1515.161 ms

20 10.3.4.3 (10.3.4.3) 1536.287 ms 1471.464 ms 1502.896 ms

21 10.3.4.4 (10.3.4.4) 1711.457 ms 1689.732 ms 1724.093 ms

22 10.3.4.3 (10.3.4.3) 1661.657 ms 1682.391 ms 1672.738 ms

23 10.3.4.4 (10.3.4.4) 1829.791 ms 1820.323 ms 1810.250 ms

24 10.3.4.3 (10.3.4.3) 1831.317 ms 1841.253 ms 1841.213 ms

25 10.3.4.4 (10.3.4.4) 1976.711 ms 1996.839 ms 2007.309 ms

26 10.3.4.3 (10.3.4.3) 1986.232 ms 1947.299 ms 1957.688 ms

27 10.3.4.4 (10.3.4.4) 2090.287 ms 2083.092 ms 2006.741 ms

28 10.3.4.3 (10.3.4.3) 2006.771 ms 1904.826 ms 1890.734 ms

29 10.3.4.4 (10.3.4.4) 1889.694 ms 1813.301 ms 1670.634 ms

30 10.3.4.3 (10.3.4.3) 1628.703 ms 1389.763 ms 1252.525 ms

user@debian:~$

В данном случае петля маршрутизации видна в трассировке, и по адресам мы можем сказать, что проблема на линке R3<->R4. Но при помощи трассировки не всегда можно локализовать проблему.

В дампе Wireshark петля будет выглядеть так:

#005 Time to Live или как IP защищается от петель маршрутизации YouTube, IP, Протокол, Сети, Компьютерные сети, Связь, Телеком, Данные, Системное администрирование, IT, Видео, Интернет, Сисадмин, Инженер, Длиннопост

Петля маршрутизации в дампе Wireshark

Для того, чтобы получить этот дамп, выполнялся вот такой пинг:

user@debian:~$ ping 192.168.2.12 -c 4 -t 12

PING 192.168.2.12 (192.168.2.12) 56(84) bytes of data.

From 10.3.4.3 icmp_seq=1 Time to live exceeded

From 10.3.4.3 icmp_seq=2 Time to live exceeded

From 10.3.4.3 icmp_seq=3 Time to live exceeded

From 10.3.4.3 icmp_seq=4 Time to live exceeded

--- 192.168.2.12 ping statistics ---

4 packets transmitted, 0 received, +4 errors, 100% packet loss, time 9ms

user@debian:~$

В сторону Host_2 было направлено четыре пакета с TTL = 12. В дампе нас интересуют поля Source, Destination и TTL, дамп снимался с интерфейса R4 в сторону R3, по нему видно что на R4 пакет приходит с TTL равным 10, далее R4 этот пакет отправляет в сторону R3, а тот в свою очередь шлет пакет в R4 и так происходит до тех пор, пока TTL не станет равным 1. Если бы не было TTL, пакет на этом линке мог бы ходить до бесконечности.

Напоследок еще один вопрос, если я изменяю статический маршрут на R4, с помощью которого организуется петля, на такой (next-hop меняется на имя интерфейса в сторону R3):

ip route 192.168.2.12 255.255.255.255 fa0/0

Трассировка с первого хоста до второго становится такой:

user@debian:~$ traceroute 192.168.2.12

traceroute to 192.168.2.12 (192.168.2.12), 30 hops max, 60 byte packets

1 192.168.1.155 (192.168.1.155) 15.593 ms 26.071 ms 36.524 ms

2 10.1.3.3 (10.1.3.3) 47.051 ms 57.558 ms 78.591 ms

3 10.3.4.4 (10.3.4.4) 68.039 ms 89.026 ms 99.513 ms

4 * * *

5 * * *

6 * * *

7 * * *

8 * * *

9 * * *

10 * * *

11 * * *

12 * * *

13 * * *

14 * * *

15 * * *

16 * * *

17 * * *

18 * * *

19 * * *

20 * * *

21 * * *

22 * * *

23 * * *

24 * * *

25 * * *

26 * * *

27 * * *

28 * * *

29 * * *

30 * * *

user@debian:~$

По трассировке мы сейчас не можем сделать однозначный вывод о том, что произошла петля. Вопрос: почему трассировка стала такой?

Следующий пост будет без видео, в нем будет краткая инструкция о том, как подготовить данную лабу, делать краткую инструкцию how to в виде длинного видео не вижу особого смысла.

Видео версия

Для тех, кому проще смотреть, чем читать, есть видео версия.

Показать полностью 1 1
16

#004 IP-пакет и структура его заголовка

Господа, дамы, здравствуйте!

Пока у нас в Новосибирске было не очень жарко, удалось написать пару постов и записать парочку видео для цикла про IPv4.

Напомню, что ранее мы разобрались с IP-адресами и, как мне кажется, разобрались. Теперь нужно поговорить о единицах измерения: массу мы измеряем в килограммах, длину в метрах, давления в паскалях, а вот фрагменты данных на сетевом уровне мы измеряем в пакетах, в общем случае фрагмент данных, передаваемый тем или иным протоколом, называется Protocol Data Unit или PDU, пакет это PDU в IP, пакет и будем разбирать.

Общая структура IP-пакета

Глобально IP-пакет состоит из двух частей: заголовка и поля данных, в которое помещается полезная для пользователей информация. В заголовке содержится вся необходимая служебная информация для обработки пакета узлами сети.

В поле данных помещаются данные, которые приходят с транспортного уровня, либо любого другого протокола, который хочет воспользоваться услугами IP. Список протоколов, который можно запихнуть внутрь пакета, легко найти (на вики, сайт IANA).

Ниже три структуры IP-пакета: первая устаревшая, вторая устаревшая, но переведена на рус-яз с ин-яза, третья актуальная.

#004 IP-пакет и структура его заголовка YouTube, IP, Протокол, Сети, Компьютерные сети, Связь, Телеком, Данные, Системное администрирование, IT, Видео, Интернет, Сисадмин, Инженер, Длиннопост

Устаревшая структура IP-пакета

#004 IP-пакет и структура его заголовка YouTube, IP, Протокол, Сети, Компьютерные сети, Связь, Телеком, Данные, Системное администрирование, IT, Видео, Интернет, Сисадмин, Инженер, Длиннопост

Актуальная структура заголовка в IP-пакете

Общего у них то, что пакет делится на ячейки, каждая ячейка имеет свой размер и свое имя, такая ячейка называется полем. Разница между представленными выше структурами в том, что в первых двух случаях есть поля Type of Service, но на самом деле это поле сейчас заменено на DSCP и ECN. Если говорить совсем просто, то поле ToS использовалось для того, чтобы узел мог отличить важный пакет от неважного и в первую очередь обрабатывать важные пакеты, а неважные уже по возможности. О DSCP и ECN поговорим ниже.

Важно понимать, что узлы ничего не знают ни о каких пакетах, пакет это лишь удобная абстракция для людей. Для компьютеров и роутеров это последовательность нулей и единиц. IP заголовок можно разбить на пять строк(если не считать опции, которые не обязательны) и длина каждой строки получится 32 бита или 4 байта, такая строка в RFC называется 32 битным словом. Поле заголовка не может начинаться на одном слове, а заканчиваться на другом.

Такой строгий подход к структуре заголовка не случаен, для себя я выделил две основные причины этого, которые в общем-то взаимосвязаны:

  1. Сам IP размер пакетов считает не в битах или байтах, а в словах.

  2. Процессоры сетевых узлов обрабатывают не байты или биты, а слова, если длина слова IP будет равна или кратна машинному слову процессора, то его будет проще обработать.

Кстати говоря, мы уже знаем размер типичного заголовка, он составляет 20 байт, т.к. у нас пять слов (если не считать поля с опциями) и каждое слово 4 байта.

Поля IP заголовка

Теперь разберемся с каждым полем в отдельности. Начнем с версии и размера заголовка.

Версия (Version)

Это версия протокола IP, под него выделено четыре бита, для протокола IPv4 здесь всегда неизменное значение – 4. Хочу заметить, что в IPv4 четверка не связана с количество октетов в IP-адресе, просто такое совпадение.

Размер заголовка (Internet Header Length)

Поле нужно, чтобы узел мог понять: где заканчивается заголовок и начинаются данные, т.к. поле опций не обязательное и их может быть больше чем одна. Под размер заголовка выделено четыре бита, значение данного поля это число, которое равно числу слов в заголовке. Понятно, что максимальное количество слов в заголовке равно пятнадцати.

DSCP и ECN

Под поле DSCP (Differentiated Services Code Point), выделено 6 бит, используется для разделения трафика на классы обслуживания.

Поле ECN (Explicit Congestion Notification) или указатель перегрузки имеет размер два бита. При помощи этого поля узлы могут сигнализировать о перегрузке. Не каждое устройство с этим полем умеет работать, сигнализация через ECN будет работать только в том случае, если узлы сети умеют его обрабатывать.

Размер пакета (Total Length)

Далее обсудим четыре поля, которые имеют отношение к размеру IP-пакета и его фрагментации, начнем с размера.

Это поле позволяет обрабатывающему устройству понять полный размер пакета, то есть заголовок + данные. Под поле выделено два байта, мы уже понимаем, что минимальный размер IP-пакета равен 20 байт, то есть это заголовок без опций и данных, а максимальный размер равен 65535 байт, это максимальное число, которое можно записать при помощи двух байт.

Идентификатор (Identification)

Чаще всего это поле используется в тех ситуация, когда пакет фрагментируется, чтобы принимающая сторона понимала, как из полученных кусочков правильно собрать пакет. У фрагментированных пакетов, которые являются частью одного целого, значение в этом поле должны быть одинаковыми.

Флаги (Flags)

Под флаги выделено три бита, используются для контроля над фрагментацией пакетов. Нумерация бит в поле начинается с нуля, крайний левый бит старший, а крайний правый – младший:

  • нулевой бит зарезервирован и должен быть всегда равен нулю;

  • если значение первого бита ноль, то допускается фрагментация пакетов, если единица (бит DF или Do not Fragment), то фрагментация запрещена и, если размер пакета при запрещенной фрагментации будет больше, чем разрешенный на канале, то такой пакет в канал отправлен не будет;

  • второй бит служит для того, чтобы конечные узлы понимали, где начинается последовательность фрагментированных пакетов, а где она заканчивается, если значение этого бита равно единице (MF More Fragments), то узел понимает, что этот пакет не последний и нужно ждать еще фрагментированные пакеты, чтобы собрать изначально разделенный пакет.

Поскольку тема фрагментации важная, то про нее будет отдельный пост и видео.

Смещение фрагмента (Fragment Offset)

Это поле используется в тех случаях, когда выполняется фрагментация пакетов, размер этого поля равен 13 бит. Об этом поле мы поговорим отдельно и детально, когда будем разбираться с фрагментацией пакетов.

Время жизни (Time to Live, TTL)

TTL имеет размер один байт или восемь бит, поле выполняет функцию защиты от петель маршрутизации. Благодаря TTL пакет не блуждает по сети до бесконечности в ситуациях, когда из-за неверной конфигурации роутеров произошла петля маршрутизации. TTL это число от 0 до 255, это число определяет максимально допустимое число узлов, через которое может пройти пакет, перед тем, как он будет уничтожен.

Время жизни для пакета задается узлом источником и изначально оно измерялось в секундах (то есть максимально возможное время жизни IP пакета раньше было 255 секунд), современные маршрутизаторы обрабатывают пакеты гораздо быстрее, чем за секунду, поэтому сейчас TTL – это значение, которое определяет число транзитных узлов, которые может пройти пакет, прежде чем он будет уничтожен.

Протокол (Protocol)

Под поле выделено 8 бит, поле использует узел получатель, чтобы понять какому процессу передать данные, когда IP-заголовок будет снят. В данное поле записывается код протокола, который был помещен отправителем в IP-пакет, коды регламентированы и их можно найти на сайте IANA.

Контрольная сумма заголовка (Header Checksum)

Под поле выделено два байта и как понятно из названия: протокол IP не имеет механизма проверки целостности данных, поскольку поле «контрольная сумма заголовка» не учитывает поле данных при проверке. Не забываем, что TTL меняется от узла к узлу, а это значит, что и контрольная сумма будет меняться от узла к узлу, то есть каждый транзитный маршрутизатор сперва принимает IP-пакет, вычисляет его контрольную сумму, сравнивает со значением, записанным в поле «контрольная сумма заголовка», затем изменяет поле TTL, вычисляет новую контрольную сумму и отправляет пакет следующему соседу.

Стоит отметить, что если значение контрольной суммы, которую посчитал узел, отличается от контрольной суммы, которая записана в пакете, то он просто уничтожается.

IP-адрес источника

Поле IP-адрес источника имеет размер 32 бита и не изменяется при передаче пакета по сети (если не рассматриваем ситуации с NAT), это поле важно для узла получателя, чтобы знать кому отвечать.

IP-адрес назначения

Данное поле имеет размер четыре байта, в него записывается IP-адрес узла, которому данный пакет предназначен, роутеры смотрят на этот поле при принятии решения о том куда направлять пакет.

Поле данных в IP-пакете

Поле данных в IP-пакете служит контейнером для других протоколов, которым IP оказывает услуги транспорта. Если учитывать, что максимально возможный размер IP-пакета 65535 байт, то максимально возможный размер поля данных 65515 байт.

Поле опций

С большой долей вероятности вы либо не будете использовать опции, либо будете пользоваться ими очень редко, поскольку для штатной передачи трафика опции обычно не используются, поэтому и останавливаться на них сейчас не буду, для самых любознательных дам ссылку.

#004 IP-пакет и структура его заголовка YouTube, IP, Протокол, Сети, Компьютерные сети, Связь, Телеком, Данные, Системное администрирование, IT, Видео, Интернет, Сисадмин, Инженер, Длиннопост

Структура IP-пакета с опциями Record Route

Если кому интересно, то выше показана структура пакета с опциями Record Route.

Вопросы для ваших ответов

В конце каждого поста обычно стараюсь придумать несколько вопросов, но к данной теме как-то не очень получается, здесь в основном была справочная информация на запоминание.

Видео версия

А вот видео версия у нас есть в наличии, кому больше нравится смотреть - смотрите.

Показать полностью 3 1
14

#003 Про IP-адреса и их свойства. Часть 1: номер сети и номер хоста

Господа, дамы, здравствуйте!

Мы разобрались с видами устройств в IP, теперь нужно научиться как-то отличать один узел сети от другого, а для этого надо разобраться с IP-адресами, какими они обладают свойствами, как их записывать и другими вопросами. Вопросов много, разбираться будем по порядку.

Тему IP-адресов я разбил на три логические части: сперва идет немного теории, потом мы разбираемся с формами записи IP-адресов, пингуя всё на свете, кроме шила и гвоздя, а в третьей части мы соберем небольшую лабу в EVE-NG, чтобы разобраться как настраиваются основные и вторичные IP-адреса на интерфейсах роутеров.

Я не нашел как на Пикабу создать оглавление для поста в его начале(если кто-то что-то подскажет по этому поводу буду благодарен), а все три части вместе получились довольно объемными, поэтому тема будет разбита на два поста, ниже теория + пинги, отдельным постом поделаем настройки.

Задачи IP-адресов

Давайте сперва поймем какие задачи решает IP-адрес, для себя я выделяю их две. Первая заключается в том, чтобы нумеровать узлы компьютерной сети(на самом деле не только узлы, но и сети, к которым узел относится), то есть IP-адрес выступает уникальным идентификатором узла в сети, вернее даже не узла, а его интерфейса. Вторая немаловажная задача IP-адресации заключается в том, что с помощью адресов мы можем построить маршрут из одной точки сети в другую, но об этом мы поговорим, когда речь пойдет о маршрутизации.

Идентифицировать устройства в небольших сетях проще было бы по названию, например, у вас дома есть компьютер, ноутбук, несколько мобильных телефонов, планшет и умный чайник, в такой ситуации проще дать имя каждому узлу и обращаться к нему по имени, а вот рассказать это имя всем остальным узлам в мире выглядит проблемой, да и гарантировать, что это имя не пересечется с другим тоже сложно. Поэтому узлы для сетевого взаимодействия мы нумеруем при помощи IP-адресов, да еще и не просто так, а по определенным правилам.

Свойства IP-адресов

IP-адрес обладает большим количеством свойств, выделю пять основных (на мой взгляд):

  1. Размер IP-адреса 32 бита или 4 байта, если хотите можно говорить октета. Это означает, что у нас примерно имеется 4 млрд адресов, более точно можете узнать, если возведете два в тридцать вторую степень (у нас для хранения IP-адреса выделено 32 бита, каждый бит может принимать значение либо ноль, либо единица).

  2. IP-адрес назначается на канальный интерфейс устройства.

  3. IP-адрес для нормальной работы сети должен быть уникальным в пределах всей сети, если на устройстве А и Б будут одинаковые адреса, то для одной части узлов сети будет доступно устройство А, а для другой части сети устройство Б, этим можно пользоваться для реализации anycast взаимодействия, так как штатно в IPv4 этот вид взаимодействия не реализован.

  4. IP-адрес состоит из двух частей:

    • первая часть адреса является идентификатором канальной среды или номером сети (Network ID), номер сети будет одинаковым для всех узлов внутри одной канальной среды и разным у узлов из разных канальных сред;

    • вторая часть IP-адреса – это номер узла или идентификатор хоста (Host ID), номер узла должен быть разным для всех узлов внутри одной сети, но может повторяться, если узлы находятся в разных канальных средах.

  5. На текущий момент границу между номером сети и номером узла проводит маска подсети. Если вы не знаете маску подсети, то не сможете сказать: где у IP-адреса номер хоста, а где номер сети.

IP-адрес на устройство назначается не его производителем, а человеком, который это устройство использует, скорее всего, сетевым администратором. При этом способ назначения не важен: адреса можно выдавать динамически при помощи DHCP, или же статически: своими собственными руками назначать каждому интерфейсу.

Номер сети и номер хоста

IP-адрес нумерует сразу две сущности: сам узел и сеть, в которой этот узел находится. Таким образом получается, что узлы, находящиеся в одной подсети, имеют одинаковый номер сети, но у них разные номера хостов. Если два или более узла находятся в одной подсети, то не будет ошибкой говорить, что они находятся в одной канальной среде.

Если два узла находятся в разных подсетях, то их номера узлов могут повторяться, а их номера сети будут разными. Узлы, находящиеся в одной канальной среде, могут обратиться к узлам другой подсети через маршрутизатор, основная задача роутера как раз и заключается в том, чтобы перекладывать кадры из одной канальной среды в другую.

Все вышесказанное продемонстрировано на этой картинке.

#003 Про IP-адреса и их свойства. Часть 1: номер сети и номер хоста Системное администрирование, IP, Протокол, Сети, Компьютерные сети, Данные, Хост, Роутер, Телекоммуникации, Связь, Видео, YouTube, Длиннопост

На ней изображено три сети: зеленая, оранжевая и синяя, номера сетей я указал римскими цифрами, номера узлов подписаны арабскими. Все три сети соединены одним роутером, для того чтобы этот роутер мог связать узлы этих трех сетей друг с другом, его интерфейсы должны находиться во всех трех сетях, то есть если мы хотим, чтобы зеленый узел мог пинговать оранжевый узел, то хотя бы один интерфейс роутера должен быть в зеленой сети и хотя бы один интерфейс роутера должен быть в оранжевой сети.

Сколько IP-адресов может быть на устройстве?

Операционные системы, а вернее прошивки некоторых простых устройств позволяют задать только один адрес, в некоторых случаях несколько IP-адресов, но спецификация IP нас не ограничивает в количестве адресов, которые можно присвоить одному узлу.

Если вспомним самое начало, то там речь была о том, что IP-адрес назначается на канальный интерфейс узла и тут можно подумать, что если у узла три канальных интерфейса, то ему можно назначить три адреса из разных подсетей, но это не так.

Если у узла три канальных интерфейса, то ему на каждый канальный интерфейс можно назначить один основной IP-адрес и сколько угодно вторичных. Важно чтобы на разных канальных интерфейсах были адреса из разных подсетей, при этом основной и вторичные IP-адреса на одном интерфейсе могут быть из одной подсети.

Как записать IP-адрес

Разбираться будем с формами записи в десятичной системе счисления. Если вы выходите в интернет, то, наверное, видели IP-адреса, например, 192.168.0.1. Читатель может заметить и спросить, ну и чего тут рассказывать, вон на экране написано 192.168.0.1, это и есть форма записи IP-адреса, которая всем понятна и удобна. Я бы мог в свою очередь сказать, что это стандартная форма записи, но, насколько мне известно, в спецификации IP стандартная форма записи никак не описана.

В общем так, если вам достаточно что IP-адрес, это число размером 32 бита и записывается он как четыре числа по восемь бит разделенных точками, то дальше можно и не читать если этого недостаточно, то давайте начнем по порядку.

Для начала запишем форму записи для 192.168.0.1 в общем виде:

8bit.8bit.8bit.8bit

А теперь давайте запишем в этом виде самый маленький и самый большой адреса:

0.0.0.0

255.255.255.255

Переведем их в двоичный вид:

00000000|00000000|00000000|00000000

11111111|11111111|11111111|11111111

В двоичном виде вместо точки я использовал пайп. Самый маленький адрес в двоичном виде представляет собой тридцать два нуля, самый большой тридцать две единицы, комбинции нулей и единиц между двумя представленными выше крайностями это все остальные IP-адреса. Фактически IP-адрес это число 32 бита, оно же может быть и десятичным. Вопрос в том, как нам записать адрес в десятичном виде одним числом и можно ли это вообще делать?

Для примера давайте пропингуем Яндекс:

PS C:\> ping ya.ru

Обмен пакетами с ya.ru [5.255.255.242] с 32 байтами данных:

Ответ от 5.255.255.242: число байт=32 время=46мс TTL=54

Ответ от 5.255.255.242: число байт=32 время=46мс TTL=54

Ответ от 5.255.255.242: число байт=32 время=47мс TTL=54

Ответ от 5.255.255.242: число байт=32 время=46мс TTL=54

Статистика Ping для 5.255.255.242:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приема-передачи в мс:

Минимальное = 46мсек, Максимальное = 47 мсек, Среднее = 46 мсек

PS C:\>

Яндекс доступен по адресу: 5.255.255.242. Давайте переведем адрес в двоичный вид, каждый октет по отдельности:

00000101|11111111|11111111|11110010

Про переводы чисел из одной системы счисления в другую я рассказывать не планирую, если не умеете переводить, пользуйтесь калькулятором в режиме "Программист", в десятичном режиме пишите свое число, в соответствующей строке видите его двоичное представление.

#003 Про IP-адреса и их свойства. Часть 1: номер сети и номер хоста Системное администрирование, IP, Протокол, Сети, Компьютерные сети, Данные, Хост, Роутер, Телекоммуникации, Связь, Видео, YouTube, Длиннопост

Перевод чисел из десятичной системы счисления в двоичную

Хотел бы обратить внимание на число 5. Калькулятор представляет его как четыре бита: 0101, а под одно число IP-адреса у нас выделено восемь бит. В таком случае мы должны вместо недостающих старших бит написать нули (чем старше бит, тем левее он стоит, аналогично и для байтов), так как они в данном случае ничего не значат и само восьми битное число никак не изменится (чего не скажешь о числе размером 32 бита, если октет будет в середине, а не как у нас крайним слева).

Но вернемся к IP-адресу. Чтобы представить его в виде обычного числа, нам нужно из двоичной формы убрать разделители:

00000101111111111111111111110010

Роутер или компьютер работают с адресами без разделителей для них это просто биты. Затем получившуюся битовую последовательность переводим в десятичную систему счисления.

#003 Про IP-адреса и их свойства. Часть 1: номер сети и номер хоста Системное администрирование, IP, Протокол, Сети, Компьютерные сети, Данные, Хост, Роутер, Телекоммуникации, Связь, Видео, YouTube, Длиннопост

Переводим число из двоичной системы в десятичную

Получилось число 100 663 282. Давайте его пропингуем.

#003 Про IP-адреса и их свойства. Часть 1: номер сети и номер хоста Системное администрирование, IP, Протокол, Сети, Компьютерные сети, Данные, Хост, Роутер, Телекоммуникации, Связь, Видео, YouTube, Длиннопост

Пингуем десятичное число, получаем IP-адрес

Видим, что винда привела этот номер в привычный нам вид, всё успешно пропинговалось. Здесь может возникнуть справедливый вопрос: почему это мы вместо того чтобы использовать простые и понятные числа, переводим их в двоичный вид, разрезаем одно большое число на четыре куска по восемь бит, потом преобразуем эти восьмибитные двоичные числа обратно в десятичные и только потом записываем IP-адреса? Если коротко, то в таком виде удобнее разрезать сети на подсети или же наоборот (человекам, а не комплюхтерам): объединять маленькие сеточки в одну большую, если более детально, то будет отдельная тема о масках подсети.

Две не очень популярные формы записи

Я знаю еще две формы записи, которые, как я слышал, пришли из систем BSD. В общем виде их можно записать так:

8bit.8bit.16bit

8bit.24bit

Я ни разу не видел, чтобы их кто-то использовал в каких-то рабочих целях, но вдруг вы столкнетесь. Винда понимает эти формы, вот для примера пинг 8.8.8.8.

PS C:\Windows\system32> ping 8.8.2056

Pinging 8.8.8.8 with 32 bytes of data:

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Ping statistics for 8.8.8.8:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 54ms, Maximum = 54ms, Average = 54ms

PS C:\Windows\system32> ping 8.526344

Pinging 8.8.8.8 with 32 bytes of data:

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Reply from 8.8.8.8: bytes=32 time=54ms TTL=112

Ping statistics for 8.8.8.8:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 54ms, Maximum = 54ms, Average = 54ms

PS C:\Windows\system32>

Итого у нас имеется четыре формы записи IP-адреса:

8bit.8bit.8bit.8bit

8bit.8bit.16bit

8bit.24bit

32bit

Переводить из одной формы записи в другую удобнее всего в двоичном виде, в двоичном виде вы просто отсчитываете нужное количество бит и ставите точку, получившуюся последовательность переводите в десятичную систему.

Если байты IP-адреса нулевые и не крайние, то некоторые операционные системы разрешают их не указывать, пользоваться этой фичей не рекомендую, особенно, если вы настраиваете адрес на оборудование, а не пингуете его, ниже примеры пинга адреса 1.0.0.1.

C:\Users\user>ping 1.0.0.1

Pinging 1.0.0.1 with 32 bytes of data:

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Reply from 1.0.0.1: bytes=32 time=46ms TTL=59

Reply from 1.0.0.1: bytes=32 time=40ms TTL=59

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Ping statistics for 1.0.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 39ms, Maximum = 46ms, Average = 41ms

C:\Users\user>ping 1.0.1

Pinging 1.0.0.1 with 32 bytes of data:

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Reply from 1.0.0.1: bytes=32 time=40ms TTL=59

Reply from 1.0.0.1: bytes=32 time=40ms TTL=59

Ping statistics for 1.0.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 39ms, Maximum = 40ms, Average = 39ms

C:\Users\user>ping 1.1

Pinging 1.0.0.1 with 32 bytes of data:

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Request timed out.

Reply from 1.0.0.1: bytes=32 time=47ms TTL=59

Reply from 1.0.0.1: bytes=32 time=39ms TTL=59

Ping statistics for 1.0.0.1:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 39ms, Maximum = 47ms, Average = 41ms

А на этом всё, здесь появится ссылка на вторую часть после ее публикации.

Вопросы для ваших ответов

Оставлю комментарий для ответов, если захотите отвечать на вопросы, то лучше делать под этим комментарием, чтобы не спойлерить другим.

  1. Какое число больше 8.234.255.12 или 9.0.0.0?

  2. Зачем IP-адресу точки?

  3. Почему если средние октеты адреса нулевые их допускается не печатать, а крайние октеты мы печатать должны?

  4. Какой байт пропущен для адреса 1.1.1 (слева от центральной единицы или справа)?

  5. У нас есть локальная сеть(не интернет), в сети есть узлы, кто этим узлам выдает IP-адреса?

  6. Нужен ли роутер для взаимодействия между узлами одной подсети?

  7. Схема: к Wi-Fi роутеру подключено два ноутбука по Wi-Fi, все три устройства в одной подсети, пингуем с первого ноутбука второй. Вопрос: как физически будут передаваться данные, напрямую между двумя ноутбуками или через роутер и почему?

Видео версия

Тем, кому лучше смотреть, чем читать.

Теоретическая теория здесь

Про формы записи адресов и пинги тут:

Показать полностью 4 2
Отличная работа, все прочитано!